The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

citrinin     (3R,4R)-7- (dihydroxymethylidene)- 3,4,5...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of citrinin

 

High impact information on citrinin

 

Chemical compound and disease context of citrinin

 

Biological context of citrinin

 

Anatomical context of citrinin

  • Total cell Ca2+ levels in antimycin-treated or hypoxic tubules did not change, suggesting that mitochondria were not buffering the increased Caf during ATP depletion [17].
  • Bcl-xL-expressing hepatocyte cell lines are resistant to tumour necrosis factor and anti-cancer drugs, but are more sensitive than isogenic control cells to antimycin A, an inhibitor of mitochondrial electron transfer [8].
  • Azide and antimycin A had no effect on the energy-dependent uptake of Ca++ by neutrophil lysosomes [18].
  • Mutants in Class I have gross alterations in the ultrastructure of their mitochondrial inner membranes together with deficiencies in cytochrome oxidase and antimycin/rotenone-sensitive NADH-cytochrome c reductase activities [19].
  • Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg [2].
 

Associations of citrinin with other chemical compounds

 

Gene context of citrinin

  • Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1 [24].
  • CIT2 expression was also increased in [rho+] cells by inhibition of respiration with antimycin A or in [rho+] cells containing a disruption of the CIT1 gene [25].
  • The expression of YHB1 in aerobic cells is enhanced in the presence of antimycin A, in thiol oxidants, or in strains that lack superoxide dismutase [26].
  • Importantly, disruption of Delta psi(m), ATP depletion, and apoptosis can be prevented by rescue signals via CD40 or by Delta psi(m) stabilizers such as antimycin or oligomycin [27].
  • A spontaneous antimycin A-resistant mutant carrying approximately four extra copies of ADH2 on chromosome XII was isolated from yeast strain 315-1D which lacks a functional copy of ADH1 and thus is antimycin A-sensitive [28].
 

Analytical, diagnostic and therapeutic context of citrinin

References

  1. Inorganic iron effects on in vitro hypoxic proximal renal tubular cell injury. Zager, R.A., Schimpf, B.A., Bredl, C.R., Gmur, D.J. J. Clin. Invest. (1993) [Pubmed]
  2. Perturbations in maturation of secretory proteins and their association with endoplasmic reticulum chaperones in a cell culture model for epithelial ischemia. Kuznetsov, G., Bush, K.T., Zhang, P.L., Nigam, S.K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Behrend, L., Mohr, A., Dick, T., Zwacka, R.M. Mol. Cell. Biol. (2005) [Pubmed]
  4. Photoaffinity labeling of an antimycin-binding site in Rhodopseudomonas sphaeroides. Wilson, E., Farley, T.M., Takemoto, J.Y. J. Biol. Chem. (1985) [Pubmed]
  5. Resistance to antimycin A in yeast by amplification of ADH4 on a linear, 42 kb palindromic plasmid. Walton, J.D., Paquin, C.E., Kaneko, K., Williamson, V.M. Cell (1986) [Pubmed]
  6. RNA splicing in Neurospora mitochondria. Characterization of new nuclear mutants with defects in splicing the mitochondrial large rRNA. Bertrand, H., Bridge, P., Collins, R.A., Garriga, G., Lambowitz, A.M. Cell (1982) [Pubmed]
  7. Identification of the BAL-labile factor. Slater, E.C., de Vries, S. Nature (1980) [Pubmed]
  8. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Tzung, S.P., Kim, K.M., Basañez, G., Giedt, C.D., Simon, J., Zimmerberg, J., Zhang, K.Y., Hockenbery, D.M. Nat. Cell Biol. (2001) [Pubmed]
  9. Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endoplasmic reticulum in intact liver. Sies, H., Graf, P., Estrela, J.M. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  10. Electron and proton transport in the ubiquinone cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroides. Patterns of binding and inhibition by antimycin. van den Berg, W.H., Prince, R.C., Bashford, C.L., Takamiya, K.I., Bonner, W.D., Dutton, P.L. J. Biol. Chem. (1979) [Pubmed]
  11. Cytoprotective Effects of Hypoxia against Cisplatin-Induced Tubular Cell Apoptosis: Involvement of Mitochondrial Inhibition and p53 Suppression. Wang, J., Biju, M.P., Wang, M.H., Haase, V.H., Dong, Z. J. Am. Soc. Nephrol. (2006) [Pubmed]
  12. Oxidant regulation of gene expression and neural tube development: Insights gained from diabetic pregnancy on molecular causes of neural tube defects. Chang, T.I., Horal, M., Jain, S.K., Wang, F., Patel, R., Loeken, M.R. Diabetologia (2003) [Pubmed]
  13. Oxidative stress in muscle and liver of rats with septic syndrome. Llesuy, S., Evelson, P., González-Flecha, B., Peralta, J., Carreras, M.C., Poderoso, J.J., Boveris, A. Free Radic. Biol. Med. (1994) [Pubmed]
  14. Energy thresholds that determine membrane integrity and injury in a renal epithelial cell line (LLC-PK1). Relationships to phospholipid degradation and unesterified fatty acid accumulation. Venkatachalam, M.A., Patel, Y.J., Kreisberg, J.I., Weinberg, J.M. J. Clin. Invest. (1988) [Pubmed]
  15. Wiskott-Aldrich syndrome: detection of carrier state by metabolic stress of platelets. Shapiro, R.S., Gerrard, J.M., Perry, G.S., White, J.G., Krivit, W., Kersey, J.H. Lancet (1978) [Pubmed]
  16. Assays of the metabolic viability of single giant mitochondria. Experiments with intact and impaled mitochondria. Maloff, B.L., Scordilis, S.P., Tedeschi, H. J. Cell Biol. (1978) [Pubmed]
  17. Cytosolic-free calcium increases to greater than 100 micromolar in ATP-depleted proximal tubules. Weinberg, J.M., Davis, J.A., Venkatachalam, M.A. J. Clin. Invest. (1997) [Pubmed]
  18. An adenosine triphosphate-dependent calcium uptake pump in human neutrophil lysosomes. Klemper, M.S. J. Clin. Invest. (1985) [Pubmed]
  19. Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas. Wiseman, A., Gillham, N.W., Boynton, J.E. J. Cell Biol. (1977) [Pubmed]
  20. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. Schulze-Osthoff, K., Beyaert, R., Vandevoorde, V., Haegeman, G., Fiers, W. EMBO J. (1993) [Pubmed]
  21. Subcellular localization and secretion of factor V from human platelets. Chesney, C.M., Pifer, D., Colman, R.W. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  22. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Doudican, N.A., Song, B., Shadel, G.S., Doetsch, P.W. Mol. Cell. Biol. (2005) [Pubmed]
  23. Superoxide dismutase and superoxide radical in Morris hepatomas. Bize, I.B., Oberley, L.W., Morris, H.P. Cancer Res. (1980) [Pubmed]
  24. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1. Paquin, C.E., Williamson, V.M. Mol. Cell. Biol. (1986) [Pubmed]
  25. Intramitochondrial functions regulate nonmitochondrial citrate synthase (CIT2) expression in Saccharomyces cerevisiae. Liao, X.S., Small, W.C., Srere, P.A., Butow, R.A. Mol. Cell. Biol. (1991) [Pubmed]
  26. Function and expression of flavohemoglobin in Saccharomyces cerevisiae. Evidence for a role in the oxidative stress response. Zhao, X.J., Raitt, D., V Burke, P., Clewell, A.S., Kwast, K.E., Poyton, R.O. J. Biol. Chem. (1996) [Pubmed]
  27. B cell receptor-stimulated mitochondrial phospholipase A2 activation and resultant disruption of mitochondrial membrane potential correlate with the induction of apoptosis in WEHI-231 B cells. Katz, E., Deehan, M.R., Seatter, S., Lord, C., Sturrock, R.D., Harnett, M.M. J. Immunol. (2001) [Pubmed]
  28. A spontaneous chromosomal amplification of the ADH2 gene in Saccharomyces cerevisiae. Paquin, C.E., Dorsey, M., Crable, S., Sprinkel, K., Sondej, M., Williamson, V.M. Genetics (1992) [Pubmed]
  29. Antimycin A-induced defenestration in rat hepatic sinusoidal endothelial cells. Braet, F., Muller, M., Vekemans, K., Wisse, E., Le Couteur, D.G. Hepatology (2003) [Pubmed]
  30. Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems. Robertson, D.E., Prince, R.C., Bowyer, J.R., Matsuura, K., Dutton, P.L., Ohnishi, T. J. Biol. Chem. (1984) [Pubmed]
  31. A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Lister, R., Chew, O., Lee, M.N., Heazlewood, J.L., Clifton, R., Parker, K.L., Millar, A.H., Whelan, J. Plant Physiol. (2004) [Pubmed]
 
WikiGenes - Universities