The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Myxothiazol     (2E,4R,5R,6E)-3,5-dimethoxy- 4-methyl-7-[2...

Synonyms: CHEBI:25461, LS-74196, CPD0-1244, AC1O5NJ4, C25H33N3O3S2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Myxothiazol

  • Several spontaneous mutants of the photosynthetic bacterium Rhodobacter capsulatus resistant to myxothiazol, stigmatellin and mucidin--inhibitors of the ubiquinol: cytochrome c oxidoreductase (cyt bc1 complex)--were isolated [1].
  • ROS generation during hypoxia was attenuated by myxothiazol, but not by diphenyleneiodonium or the nitric-oxide synthase inhibitor L-nitroarginine [2].
  • Myxothiazol, an antibiotic from Myxococcus fulvus, which inhibits mitochondrial respiration in the bc1 complex of the respiratory chain, has effects on the redox components of isolated succinate-cytochrome c reductase complex which suggest that it interacts with both cytochrome b and the iron-sulfur protein of the bc1 complex [3].
  • The biosynthetic mta gene cluster responsible for myxothiazol formation from the fruiting body forming myxobacterium Stigmatella aurantiaca DW4/3-1 was sequenced and analyzed [4].
  • Myxothiazol (0.6 microM), a site III mitochondrial inhibitor, blocked the protection of menadione and significantly increased infarction to 25.2 +/- 3.8% [5].
 

High impact information on Myxothiazol

  • The positions of the four iron centers within the bc1 complex and the binding sites of the two specific respiratory inhibitors antimycin A and myxothiazol were identified [6].
  • Myxothiazol-resistant transformants have been created by introducing a nucleotide substitution into the cob gene [7].
  • To activate the involved proteins posttranslationally, they were coexpressed with the phosphopantetheinyltransferase MtaA from the myxothiazol biosynthetic gene cluster [8].
  • Furthermore, cells treated with mitochondrial inhibitors, such as rotenone and myxothiazol, provided direct evidence that PHDs remain active in hypoxic cells lacking functional mitochondria [9].
  • Furthermore, the hypoxic activation of p38alpha and HIF-1 was abolished by myxothiazol, a mitochondrial complex III inhibitor, and glutathione peroxidase 1 (GPX1), a scavenger of hydrogen peroxide [10].
 

Chemical compound and disease context of Myxothiazol

 

Biological context of Myxothiazol

 

Anatomical context of Myxothiazol

 

Associations of Myxothiazol with other chemical compounds

 

Gene context of Myxothiazol

 

Analytical, diagnostic and therapeutic context of Myxothiazol

References

  1. Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus. Daldal, F., Tokito, M.K., Davidson, E., Faham, M. EMBO J. (1989) [Pubmed]
  2. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. Vanden Hoek, T.L., Becker, L.B., Shao, Z., Li, C., Schumacker, P.T. J. Biol. Chem. (1998) [Pubmed]
  3. An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex. von Jagow, G., Ljungdahl, P.O., Graf, P., Ohnishi, T., Trumpower, B.L. J. Biol. Chem. (1984) [Pubmed]
  4. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. Silakowski, B., Schairer, H.U., Ehret, H., Kunze, B., Weinig, S., Nordsiek, G., Brandt, P., Blöcker, H., Höfle, G., Beyer, S., Müller, R. J. Biol. Chem. (1999) [Pubmed]
  5. Menadione mimics the infarct-limiting effect of preconditioning in isolated rat hearts. Yue, Y., Krenz, M., Cohen, M.V., Downey, J.M., Critz, S.D. Am. J. Physiol. Heart Circ. Physiol. (2001) [Pubmed]
  6. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Xia, D., Yu, C.A., Kim, H., Xia, J.Z., Kachurin, A.M., Zhang, L., Yu, L., Deisenhofer, J. Science (1997) [Pubmed]
  7. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Remacle, C., Cardol, P., Coosemans, N., Gaisne, M., Bonnefoy, N. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: Biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. Gaitatzis, N., Kunze, B., Müller, R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Pan, Y., Mansfield, K.D., Bertozzi, C.C., Rudenko, V., Chan, D.A., Giaccia, A.J., Simon, M.C. Mol. Cell. Biol. (2007) [Pubmed]
  10. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Emerling, B.M., Platanias, L.C., Black, E., Nebreda, A.R., Davis, R.J., Chandel, N.S. Mol. Cell. Biol. (2005) [Pubmed]
  11. Cytoprotective Effects of Hypoxia against Cisplatin-Induced Tubular Cell Apoptosis: Involvement of Mitochondrial Inhibition and p53 Suppression. Wang, J., Biju, M.P., Wang, M.H., Haase, V.H., Dong, Z. J. Am. Soc. Nephrol. (2006) [Pubmed]
  12. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. Leach, R.M., Hill, H.M., Snetkov, V.A., Robertson, T.P., Ward, J.P. J. Physiol. (Lond.) (2001) [Pubmed]
  13. Mitochondrial ROS initiate phosphorylation of p38 MAP kinase during hypoxia in cardiomyocytes. Kulisz, A., Chen, N., Chandel, N.S., Shao, Z., Schumacker, P.T. Am. J. Physiol. Lung Cell Mol. Physiol. (2002) [Pubmed]
  14. A novel biosynthetic pathway providing precursors for fatty acid biosynthesis and secondary metabolite formation in myxobacteria. Mahmud, T., Bode, H.B., Silakowski, B., Kroppenstedt, R.M., Xu, M., Nordhoff, S., Höfle, G., Müller, R. J. Biol. Chem. (2002) [Pubmed]
  15. Effect of inhibition of the bc1 complex on gene expression profile in yeast. Bourges, I., Horan, S., Meunier, B. J. Biol. Chem. (2005) [Pubmed]
  16. Hypoxia diminishes toll-like receptor 4 expression through reactive oxygen species generated by mitochondria in endothelial cells. Ishida, I., Kubo, H., Suzuki, S., Suzuki, T., Akashi, S., Inoue, K., Maeda, S., Kikuchi, H., Sasaki, H., Kondo, T. J. Immunol. (2002) [Pubmed]
  17. Metabolic Engineering of Pseudomonas putida for Methylmalonyl-CoA Biosynthesis to Enable Complex Heterologous Secondary Metabolite Formation. Gross, F., Ring, M.W., Perlova, O., Fu, J., Schneider, S., Gerth, K., Kuhlmann, S., Stewart, A.F., Zhang, Y., M??ller, R. Chem. Biol. (2006) [Pubmed]
  18. Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. Nobes, C.D., Brown, G.C., Olive, P.N., Brand, M.D. J. Biol. Chem. (1990) [Pubmed]
  19. The control of mitochondrial oxidations by complex III in rat muscle and liver mitochondria. Implications for our understanding of mitochondrial cytopathies in man. Taylor, R.W., Birch-Machin, M.A., Bartlett, K., Lowerson, S.A., Turnbull, D.M. J. Biol. Chem. (1994) [Pubmed]
  20. Subunit 6 regulates half-of-the-sites reactivity of the dimeric cytochrome bc1 complex in Saccharomyces cerevisiae. Schmitt, M.E., Trumpower, B.L. J. Biol. Chem. (1990) [Pubmed]
  21. Ouabain interaction with cardiac Na+/K+-ATPase initiates signal cascades independent of changes in intracellular Na+ and Ca2+ concentrations. Liu, J., Tian, J., Haas, M., Shapiro, J.I., Askari, A., Xie, Z. J. Biol. Chem. (2000) [Pubmed]
  22. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Raha, S., McEachern, G.E., Myint, A.T., Robinson, B.H. Free Radic. Biol. Med. (2000) [Pubmed]
  23. Triphasic reduction of cytochrome b and the protonmotive Q cycle pathway of electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain. Tang, H.L., Trumpower, B.L. J. Biol. Chem. (1986) [Pubmed]
  24. Tight binding of inhibitors to bovine bc1 complex is independent of the Rieske protein redox state. Consequences for semiquinone stabilization in the quinol oxidation site. Covián, R., Pardo, J.P., Moreno-Sánchez, R. J. Biol. Chem. (2002) [Pubmed]
  25. Molecular basis for resistance to myxothiazol, mucidin (strobilurin A), and stigmatellin. Cytochrome b inhibitors acting at the center o of the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae. di Rago, J.P., Coppée, J.Y., Colson, A.M. J. Biol. Chem. (1989) [Pubmed]
  26. Ouabain suppresses glucose-induced mitochondrial ATP production and insulin release by generating reactive oxygen species in pancreatic islets. Kajikawa, M., Fujimoto, S., Tsuura, Y., Mukai, E., Takeda, T., Hamamoto, Y., Takehiro, M., Fujita, J., Yamada, Y., Seino, Y. Diabetes (2002) [Pubmed]
  27. Exploration of ligands to the Qi site semiquinone in the bc1 complex using high-resolution EPR. Kolling, D.R., Samoilova, R.I., Holland, J.T., Berry, E.A., Dikanov, S.A., Crofts, A.R. J. Biol. Chem. (2003) [Pubmed]
  28. Selective modulation of ligand-gated P2X purinoceptor channels by acute hypoxia is mediated by reactive oxygen species. Mason, H.S., Bourke, S., Kemp, P.J. Mol. Pharmacol. (2004) [Pubmed]
  29. Haem oxygenase 1 gene induction by glucose deprivation is mediated by reactive oxygen species via the mitochondrial electron-transport chain. Chang, S.H., Garcia, J., Melendez, J.A., Kilberg, M.S., Agarwal, A. Biochem. J. (2003) [Pubmed]
  30. A region of the C-terminal part of the 11-kDa subunit of ubiquinol-cytochrome-c oxidoreductase of the yeast Saccharomyces cerevisiae contributes to the structure of the Qout reaction domain. Hemrika, W., Berden, J.A., Grivell, L.A. Eur. J. Biochem. (1993) [Pubmed]
  31. In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. Gupta, K.J., Stoimenova, M., Kaiser, W.M. J. Exp. Bot. (2005) [Pubmed]
  32. Glutamate loading protects freshly isolated and perfused adult cardiomyocytes against intracellular ROS generation. King, N., McGivan, J.D., Griffiths, E.J., Halestrap, A.P., Suleiman, M.S. J. Mol. Cell. Cardiol. (2003) [Pubmed]
  33. Signal transduction of opioid-induced cardioprotection in ischemia-reperfusion. McPherson, B.C., Yao, Z. Anesthesiology (2001) [Pubmed]
  34. Transcriptional response to nitrosative stress in Saccharomyces cerevisiae. Horan, S., Bourges, I., Meunier, B. Yeast (2006) [Pubmed]
  35. Myxothiazol: a reversible blocker of the cell cycle. Conradt, P., Dittmar, K.E., Schliephacke, H., Trowitzsch-Kienast, W. J. Antibiot. (1989) [Pubmed]
 
WikiGenes - Universities