The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Distribution of O-acetyl groups in the exopolysaccharide synthesized by Rhizobium leguminosarum strains is not determined by the Sym plasmid.

The patterns of O-acetylation of the exopolysaccharide (EPS) from the Sym plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii strain LPR5, R. leguminosarum bv. trifolii strain ANU843 and R. leguminosarum bv. viciae strain 248 were determined by 1H and 13C NMR spectroscopy. Beside a site indicative of the chromosomal background, these strains have one site of O-acetylation in common, namely residue b of the repeating unit. The O-acetyl esterification pattern of EPS of the Sym plasmid-cured derivatives of strains LPR5, ANU843, and 248 was not altered by the introduction of a R. leguminosarum bv. viciae Sym plasmid or a R. leguminosarum bv. trifolii Sym plasmid. The induction of nod gene expression by growth of the bacteria in the presence of Vicia sativa plants or by the presence of the flavonoid naringenin, produced no significant changes in either amount or sites of O-acetyl substitution. Furthermore, no such changes were found in the EPS from a Rhizobium strain in which the nod genes are constitutively expressed. The substitution pattern of the exopolysaccharide from R. leguminosarum is, therefore, determined by the bacterial genome and is not influenced by genes present on the Sym plasmid. This conclusion is inconsistent with the suggestion of Philip-Hollingsworth et al. (Philip-Hollingsworth, S., Hollingsworth, R. I., Dazzo, F. B., Djordjevic, M. A., and Rolfe, B. G. (1989) J. Biol. Chem. 264, 5710-5714) that nod genes of R. leguminosarum bv. trifolii, by influencing the acetylation pattern of EPS, determine the host specificity of nodulation.[1]

References

  1. Distribution of O-acetyl groups in the exopolysaccharide synthesized by Rhizobium leguminosarum strains is not determined by the Sym plasmid. Cremers, H.C., Batley, M., Redmond, J.W., Wijfjes, A.H., Lugtenberg, B.J., Wijffelman, C.A. J. Biol. Chem. (1991) [Pubmed]
 
WikiGenes - Universities