The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Channeling of intermediates in the CDP-choline pathway of phosphatidylcholine biosynthesis in cultured glioma cells is dependent on intracellular Ca2+.

The major route of phosphatidylcholine (Ptd-choline) biosynthesis in mammalian cells is the CDP-choline pathway which involves stepwise conversion of choline to phosphocholine (P-choline), cytidine diphosphate choline (CDP-choline), and Ptd-choline. Our previous studies with electropermeabilized (EP) rat glioma (C6) cells have indicated that the intermediates of this pathway are not freely diffusible in the cell but are channeled toward synthesis of Ptd-choline (George, T.P., Morash, S.C., Cook, H.W., Byers, D.M., Palmer, F. B. St.C., and Spence, M.W. (1989) Biochim. Biophys. Acta 1004, 283-291). In this study, Ca(2+)-[ethylene-bis(oxyethylenenitrilo)]tetraacetic acid buffers were used to investigate the role of intracellular free Ca2+ levels in functional organization of this pathway in EP glioma cells. In EP cells reduction of free Ca2+ in the medium from 1.8 mM to less than 200 nM resulted in 2-3-fold stimulation of exogenous [3H]choline and [14C]P-choline incorporation into Ptd-choline whereas incorporation of exogenous CDP-[14C]choline was augmented 100-fold; there was no uptake or incorporation of labeled P-choline or CDP-choline in intact cells. In EP cells incubated at 1.8 mM Ca2+ the water-soluble products of choline metabolism (choline, P-choline, CDP-choline, and glycerophosphocholine) were retained at 37 degrees C; in contrast, in the presence of 100 nM Ca2+ there was uniform leakage of these metabolites. Experiments with hemicholinium-3, an inhibitor of choline transport, and EP cells at 100 nM Ca2+ show that linkage of choline transport and Ptd-choline biosynthesis is also dependent on Ca2+. These results suggest that channeling of intermediates in the CDP-choline pathway of Ptd-choline biosynthesis in glioma cells is mediated by intracellular Ca2+ levels that may coordinately regulate the steps involved in conversion of choline to Ptd-choline.[1]

References

 
WikiGenes - Universities