The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibition of mucin secretion in a colonic adenocarcinoma cell line by DIDS and potassium channel blockers.

The factors which influence the exocytosis of mucins are not well characterized. Since the physical properties of mucins may be affected significantly by the co-secretion of electrolytes and water, we studied the relationship between ion movement and mucin secretion in T84 cells, a human colonic adenocarcinoma cell line which has been well characterized with respect to apical chloride secretion. Secretion of mucin was assessed by immunoassay of mucin appearing in the medium within 30 min of stimulation. Cells were grown on plastic in DMEM/Ham's F12 medium and experiments were carried out at 70% confluence. Mucin secretion was stimulated by the calcium ionophore A23187, or A23187 plus vasoactive intestinal polypeptide. Stimulated mucin secretion was not affected by loop diuretics (furosemide (1 x 10(-3) M) or bumetanide (1 x 10(-4) M)), with or without the addition of ouabain (5 x 10(-5) M) and amiloride (1 x 10(-5) M), making it unlikely that transcellular chloride movements in necessary for mucin secretion. However, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; (1 x 10(-5) and 5 x 10(-5) M) and three potassium channel blockers BaCl2 (1 x 10(-3) and 5 x 10(-3) M), tetraethylammonium chloride (1 x 10(-2) M) and quinine (5 x 10(-4) M) inhibited mucin secretion. A DIDS-sensitive chloride channel or chloride/bicarbonate exchanger and a Ca2(+)-dependent potassium channel may play important roles in mucin secretion. Since plasma membranes are sparingly permeable to DIDS, the DIDS-sensitive site is likely to be on the apical plasma membrane, perhaps at an initiation locus for exocytosis.[1]

References

  1. Inhibition of mucin secretion in a colonic adenocarcinoma cell line by DIDS and potassium channel blockers. Marcon, M.A., McCool, D., Forstner, J., Forstner, G. Biochim. Biophys. Acta (1990) [Pubmed]
 
WikiGenes - Universities