The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional properties of the asialo-fifth component of human complement.

Removal of exposed, terminal sialic acid (SA) from carbohydrate chains N-glycosidically linked to asparagine residues of highly pure human C5 with bacterial sialidase increased C-mediated hemolysis of antibody-sensitized sheep E maximally 2.77-fold. Sialidase-treated C5 used as a reagent for the titration of C6, C7, C8, and C9 resulted in increased titers of all these components compared to buffer-treated C5. As determined by a fluorometric method, ca. 65% of the SA was enzymically hydrolyzed under optimal conditions. Endoglycosidase F incubated with C5 followed by monosaccharide analyses by anion exchange chromatography with pulsed amperometric detection revealed both high mannose and complex (terminate in SA) oligosaccharides were hydrolyzed; no effect was found on the functional activity of C5. Approximately 4% of the complex oligosaccharides were hydrolyzed from C5. Comparison of sialidase- and buffer-treated C5 decay rates from EAC1gp(4b,oxy2a,3b)hu resulted in two linear components of the decay curve with sialidase-treated C5, but one linear component with buffer-treated C5. Of the sialidase-treated 125I-C5 15% was bound to EAC1gp(4b,oxy2a,3b)hu compared to 9.3% of buffer-treated 125I-C5. Furthermore, 27% of sialidase-treated 125I-C5 was bound to EAC1gp,4bhu compared to 16.6% of buffer-treated 125I-C5, but no lysis occurred after the addition of C6-C9. The mechanism of increased hemolytic activity after removal of SA from C5 is: the Tmax is prolonged at 30 degrees C (ca. 15 min vs 9 min), and a higher percentage of C5 binds to cellular intermediates compared to buffer-treated C5.[1]

References

  1. Functional properties of the asialo-fifth component of human complement. Schultz, D.R., Arnold, P.I. J. Immunol. (1990) [Pubmed]
 
WikiGenes - Universities