The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Agonist-Induced Desensitization/Resensitization of Human G Protein-Coupled Receptor 17: A Functional Cross-Talk between Purinergic and Cysteinyl-Leukotriene Ligands.

G protein-coupled receptor (GPR) 17 is a P2Y-like receptor that responds to both uracil nucleotides (as UDP-glucose) and cysteinyl-leukotrienes (cysLTs, as LTD(4)). By bioinformatic analysis, two distinct binding sites have been hypothesized to be present on GPR17, but little is known on their putative cross-regulation and on GPR17 desensitization/resensitization upon agonist exposure. In this study, we investigated in GPR17-expressing 1321N1 cells the cross-regulation between purinergic- and cysLT-mediated responses and analyzed GPR17 regulation after prolonged agonist exposure. Because GPR17 receptors couple to G(i) proteins and adenylyl cyclase inhibition, both guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding and the cAMP assay have been used to investigate receptor functional activity. UDP-glucose was found to enhance LTD(4) potency in mediating activation of G proteins and vice versa, possibly through an allosteric mechanism. Both UDP-glucose and LTD(4) induced a time- and concentration-dependent GPR17 loss of response (homologous desensitization) with similar kinetics. GPR17 homologous desensitization was accompanied by internalization of receptors inside cells, which occurred in a time-dependent manner with similar kinetics for both agonists. Upon agonist removal, receptor resensitization occurred with the typical kinetics of G protein-coupled receptors. Finally, activation of GPR17 by UDP-glucose (but not vice versa) induced a partial heterologous desensitization of LTD(4)-mediated responses, suggesting that nucleotides have a hierarchy in producing desensitizing signals. These findings suggest a functional cross-talk between purinergic and cysLT ligands at GPR17. Because of the recently suggested key role of GPR17 in brain oligodendrogliogenesis and myelination, this cross-talk may have profound implications in fine-tuning cell responses to demyelinating and inflammatory conditions when these ligands accumulate at lesion sites.[1]

References

  1. Agonist-Induced Desensitization/Resensitization of Human G Protein-Coupled Receptor 17: A Functional Cross-Talk between Purinergic and Cysteinyl-Leukotriene Ligands. Daniele, S., Trincavelli, M.L., Gabelloni, P., Lecca, D., Rosa, P., Abbracchio, M.P., Martini, C. J. Pharmacol. Exp. Ther. (2011) [Pubmed]
 
WikiGenes - Universities