The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Physiological Roles of the cyAbrB Transcriptional Regulator Pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803.

All known cyanobacterial genomes possess multiple copies of genes encoding AbrB-like transcriptional regulators, known as cyAbrBs, which are distinct from those conserved among other bacterial species. In this study, we addressed the physiological roles of Sll0822 and Sll0359, the two cyAbrBs in Synechocystis sp. strain PCC 6803, under nonstress conditions (20 μmol of photons m(-2) s(-1) in ambient CO(2)). When the sll0822 gene was disrupted, the expression levels of nitrogen-related genes such as urtA, amt1, and glnB significantly decreased compared with those in the wild-type cells. Possibly due to the increase of the cellular carbon/nitrogen ratio in the sll0822-disrupted cells, a decrease in pigment contents, downregulation of carbon-uptake related genes, and aberrant accumulation of glycogen took place. Moreover, the mutant exhibited the decrease in the expression level of cytokinesis-related genes such as ftsZ and ftsQ, resulting in the defect in cell division and significant increase in cell size. The pleiotrophic phenotype of the mutant was efficiently suppressed by the introduction of Sll0822 and also partially suppressed by the introduction of Sll0359. When His-tagged cyAbrBs were purified from overexpression strains, Sll0359 and Sll0822 were copurified with each other. The cyAbrBs in Synechocystis sp. strain PCC 6803 seem to interact with each other and regulate carbon and nitrogen metabolism as well as the cell division process under nonstress conditions.[1]

References

 
WikiGenes - Universities