The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague.

We studied a protein antigen, designated pH 6 Ag, that has the same regulation of expression as the previously described Yersinia pestis pH 6 Ag. Monospecific antiserum to this antigen recognized several proteins, ranging from 15 to over 75 kilodaltons (kDa), which were strongly expressed when Y. pestis was cultivated at 37 degrees C and pH 6 but were expressed weakly, if at all, at 37 degrees C and pH 8 and at 26 degrees C. The antigen appeared to be composed of aggregates of a 15-kDa subunit. Escherichia coli minicell analysis and Western blotting (immunoblotting) of minicell extracts containing the cloned pH 6 Ag locus revealed that a 1.7-kilobase- pair (kb) region of Y. pestis chromosomal DNA produced 16- and 15-kDa immunoreactive proteins. We used transposon mutagenesis of the pH 6 Ag-coding region to demonstrate that the 16- and 15-kDa polypeptides were produced by the same cistron. The pH 6 Ag structural gene, psaA, was located within a 0.5-kb region of DNA. A Tn10lacZ transposon insertion 1.2 kb upstream of the psaA locus but outside the psaA transcriptional unit caused decreased expression of pH 6 Ag in both E. coli and Y. pestis and defined the psaE locus necessary for maximum pH 6 Ag expression. This locus itself was not regulated by temperature or pH. However, psaA remained responsive to both of these environmental signals in a Y. pestis psaE mutant. Mutation of either psaE or psaA resulted in at least a 100-fold reduction in the intravenous 50% lethal dose of Y. pestis in mice. Accordingly, pH 6 Ag is involved in the pathogenesis of bubonic plague.[1]

References

 
WikiGenes - Universities