The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Plague

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Plague

  • Yersinia, the causative bacteria of the bubonic plague and other enteric diseases, secrete an active PTPase, Yop51, that enters and suppresses host immune cells [1].
 

High impact information on Plague

  • A Y. pestis strain lacking the plasmid-encoded cell-surface plasminogen activator, which is avirulent by intradermal or s.c. injection, was able to cause fatal primary septicemic plague at low incidence, but not bubonic plague, when transmitted by fleas [2].
  • The prevailing hypothesis is that the selective rise of CCR5-Delta 32 to its current frequency can be attributed to bubonic plague [3].
  • In Caenorhabditis elegans, mutations in the srf-3 locus confer resistance to infection by Microbacterium nematophilum, and they also prevent biofilm formation by Yersinia pseudotuberculosis, a close relative of the bubonic plague agent Yersinia pestis [4].
  • In addition, a ybtP mutant showed reduced iron accumulation and was avirulent in mice by a subcutaneous route of infection that mimics flea transmission of bubonic plague [5].
  • YopM, a member of the leucine-rich repeat protein superfamily, is an effector produced by the bubonic plague bacterium, Yersinia pestis, that is essential for virulence [6].
 

Chemical compound and disease context of Plague

 

Anatomical context of Plague

 

Gene context of Plague

  • A recent and prevalent mutation in the chemokine receptor CCR5 in humans of northern European ancestry has been proposed to provide protection against bubonic plague [12].
  • Previously it was shown that a deletion of the Hmu system had no effect on the virulence of Y. pestis in a mouse model of bubonic plague [13].
  • Intratracheal delivery of aerosolized monoclonal antibodies with specificity for Yersinia pestis LcrV and F1 antigens protected mice in a model of pneumonic plague [14].
  • The current human whole-cell vaccine is ineffective against pneumonic plague caused by typical F1 capsule positive (F1+) strains of Yersinia pestis [15].
  • We conclude that in this animal model of pneumonic plague, intra-nasal administration of microgram quantities of Yersinia pestis subunits confers protective immunity, provided the vaccines are microencapsulated or admixed with a strong mucosal adjuvant, such as the cholera toxin B subunit [16].
 

Analytical, diagnostic and therapeutic context of Plague

References

  1. Crystal structure of Yersinia protein tyrosine phosphatase at 2.5 A and the complex with tungstate. Stuckey, J.A., Schubert, H.L., Fauman, E.B., Zhang, Z.Y., Dixon, J.E., Saper, M.A. Nature (1994) [Pubmed]
  2. Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Sebbane, F., Jarrett, C.O., Gardner, D., Long, D., Hinnebusch, B.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Galvani, A.P., Slatkin, M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  4. Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. Höflich, J., Berninsone, P., Göbel, C., Gravato-Nobre, M.J., Libby, B.J., Darby, C., Politz, S.M., Hodgkin, J., Hirschberg, C.B., Baumeister, R. J. Biol. Chem. (2004) [Pubmed]
  5. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Fetherston, J.D., Bertolino, V.J., Perry, R.D. Mol. Microbiol. (1999) [Pubmed]
  6. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. Evdokimov, A.G., Anderson, D.E., Routzahn, K.M., Waugh, D.S. J. Mol. Biol. (2001) [Pubmed]
  7. Antibiotic treatment of experimental pneumonic plague in mice. Byrne, W.R., Welkos, S.L., Pitt, M.L., Davis, K.J., Brueckner, R.P., Ezzell, J.W., Nelson, G.O., Vaccaro, J.R., Battersby, L.C., Friedlander, A.M. Antimicrob. Agents Chemother. (1998) [Pubmed]
  8. High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. Hare, J.M., McDonough, K.A. J. Bacteriol. (1999) [Pubmed]
  9. Short- and long-term efficacy of single-dose subunit vaccines against Yersinia pestis in mice. Anderson, G.W., Heath, D.G., Bolt, C.R., Welkos, S.L., Friedlander, A.M. Am. J. Trop. Med. Hyg. (1998) [Pubmed]
  10. Efficacy of the latest fluoroquinolones against experimental Yersinia pestis. Steward, J., Lever, M.S., Russell, P., Beedham, R.J., Stagg, A.J., Taylor, R.R., Brooks, T.J. Int. J. Antimicrob. Agents (2004) [Pubmed]
  11. The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Grabenstein, J.P., Marceau, M., Pujol, C., Simonet, M., Bliska, J.B. Infect. Immun. (2004) [Pubmed]
  12. Evolutionary genetics: CCR5 mutation and plague protection. Mecsas, J., Franklin, G., Kuziel, W.A., Brubaker, R.R., Falkow, S., Mosier, D.E. Nature (2004) [Pubmed]
  13. Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Rossi, M.S., Fetherston, J.D., Létoffé, S., Carniel, E., Perry, R.D., Ghigo, J.M. Infect. Immun. (2001) [Pubmed]
  14. Administration of antibody to the lung protects mice against pneumonic plague. Hill, J., Eyles, J.E., Elvin, S.J., Healey, G.D., Lukaszewski, R.A., Titball, R.W. Infect. Immun. (2006) [Pubmed]
  15. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion protein vaccine. Heath, D.G., Anderson, G.W., Mauro, J.M., Welkos, S.L., Andrews, G.P., Adamovicz, J., Friedlander, A.M. Vaccine (1998) [Pubmed]
  16. Intra nasal administration of poly-lactic acid microsphere co-encapsulated Yersinia pestis subunits confers protection from pneumonic plague in the mouse. Eyles, J.E., Sharp, G.J., Williamson, E.D., Spiers, I.D., Alpar, H.O. Vaccine (1998) [Pubmed]
  17. Bichat guidelines for the clinical management of plague and bioterrorism-related plague. Bossi, P., Tegnell, A., Baka, A., Van Loock, F., Hendriks, J., Werner, A., Maidhof, H., Gouvras, G. Euro surveillance : bulletin européen sur les maladies transmissibles = European communicable disease bulletin. (2004) [Pubmed]
 
WikiGenes - Universities