The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of a K+ conductance by bradykinin and by inositol-1,4,5-trisphosphate in rat glioma cells: involvement of intracellular and extracellular Ca2+.

Extracellular application of bradykinin and injection of inositol-1,4,5-trisphosphate (Ins-P3) induced a hyperpolarization in polyploid rat glioma cells. Ins-1,4,5-P3 and Ins-2,4,5-P3 were effective but not Ins-4,5-P2, Ins-1,3,4,5-P4 and Ins-1,3,4,5,6-P5. The reversal potential of the hyperpolarizing response induced by bradykinin or by Ins-P3 increased to a comparable degree with increasing the extracellular K+ concentration. Certain blockers of K+ channels, for example charybdotoxin (5-50 nM), Ba2+ (5-20 mM), 4-aminopyridine (5-10 mM) and quinidine (0.1-0.5 mM) reversibly suppressed the membrane potential response to bradykinin or to Ins-P3; however, apamin (1 microM) and D-tubocurarine (0.5 mM) had no effect. Intracellular injection of EGTA made the glioma cells unresponsive to bradykinin. Superfusion of the cells with Ca2(+)-free medium gradually and reversibly abolished the response to bradykinin, but only slightly reduced the effect of Ins-P3. The Ca2+ channel blockers Co2+ (1-5 mM), Mn2+ (2-6 mM) and nifedipine (1-20 microM), but not desmethoxyverapamil (100 microM) inhibited the hyperpolarizing effect of bradykinin. The hyperpolarization induced by Ins-P3, however, was not influenced by Mn2+ (1-5 mM) or by Co2+ (7 mM). Injection of Ca2+ into the glioma cells induced a hyperpolarization susceptible to Ba2+ and quinidine. Treatment of glioma cells with an activator or with inhibitors of protein kinase C or with pertussis toxin did not affect the response to bradykinin. Incubation of the cells with the Ca2+ ionophore A23187 (0.1-1 microM) made the cells unresponsive to bradykinin and, somewhat less, to Ins-P3. At these concentrations the Ca2+ ionophore primarily depletes intracellular Ca2+ stores. In summary, bradykinin, via B2-receptors (blocked by [Thi5,8, D-Phe7]-bradykinin) activates a K+ conductance in glioma cells following a rise of cytosolic Ca2+ activity most likely due to Ins-P3-mediated release of Ca2+ from internal stores. Entry of extracellular Ca2+ appears also to be involved in this process.[1]


WikiGenes - Universities