The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic and biochemical characterization of the CHO-UV-1 mutant defective in postreplication recovery of DNA.

The CHO-UV-1 mutant, a Chinese hamster ovary cell with defective postreplication recovery of DNA, is 2- to 4-fold more sensitive than its wild-type counterpart (CHO-77256) to the lethal effects of ethylating agents and UV radiation; it is also hypersensitive (10- to 20-fold) to some DNA-methylating and -cross-linking agents. We studied the CHO-UV-1 mutant further to define its phenotype in terms of DNA damage induction and repair, methyltransferase activity, and effects of caffeine on mutational and lethal responses. Both wild-type and CHO-UV-1 cells incurred similar levels and types of damage when exposed to UV radiation, N-methyl-N'-nitro-N-nitrosoguanidine, or N-methyl-N-nitrosourea. The rate and extent of repair of Micrococcus luteus endonuclease-sensitive sites after UV irradiation or treatment with N-methyl-N'-nitro-N-nitrosoguanidine were also equivalent in these two cell types. Twenty % of the initial endonuclease-sensitive sites induced in either cell line remained at 18 h after UV irradiation; approximately 8% of the sites after N-methyl-N'-nitro-N-nitrosoguanidine exposure were present in both parental and CHO-UV-1 cells after a 17-h repair period. Moreover, the ability of CHO-UV-1 to resynthesize and ligate DNA during excision repair was similar to that of its parent. Neither CHO-UV-1 nor CHO-77256 had appreciable levels of O6-methylguanine-DNA methyltransferase activity which ameliorates the cytotoxicity of alkylating agents. Caffeine, a known inhibitor of postreplication repair, decreased the frequency of mutation induction at the hypoxanthine-guanine phosphoribosyltransferase locus by 40-55% in CHO-77256 but not in CHO-UV-1. These results rule out defective excision repair as a factor in the hypersensitivity of the CHO-UV-1 mutant to DNA-damaging agents. Hence, this cell line appears to derive from a mutation affecting nonexcision repair processes and should be useful in clarifying the mechanism(s) of postreplication recovery of DNA in mammalian cells.[1]


  1. Genetic and biochemical characterization of the CHO-UV-1 mutant defective in postreplication recovery of DNA. Hentosh, P., Collins, A.R., Correll, L., Fornace, A.J., Giaccia, A., Waldren, C.A. Cancer Res. (1990) [Pubmed]
WikiGenes - Universities