The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Metabolism and biologic response of estrogen sulfates in hormone-dependent and hormone-independent mammary cancer cell lines. Effect of antiestrogens.

Different estrogen-3-sulfates (estrone-3-sulfate, estradiol-3-sulfate, and estriol-3-sulfate) can provoke important biologic responses in different mammary cancer cell lines; there is a significant increase in progesterone receptor. However, no significant effect was observed with estrogen-17-sulfates. The reason for the biologic response of estrogen-3-sulfates is that these sulfates are hydrolyzed, and no sulfatase activity for C17-sulfates is present in these cell lines. [3H]-Estrone sulfate is converted in a very high percentage to estradiol (E2) in different hormone-dependent mammary cancer cell lines (MCF-7, R-27, and T47D), but very little or no conversion was found in hormone-independent mammary cancer cell lines (MDA-MB-231 and MDA-MB-436). Different antiestrogens (tamoxifen and its derivatives) and another potent antiestrogen, ICI 164,384, significantly decrease the concentration of estradiol after incubation of estrone sulfate with the different hormone-dependent mammary cancer cell lines. No significant effect in the uptake and conversion of estrone sulfate was observed in hormone-independent mammary cancer cell lines. The data indicate that sulfatase activity for estrone sulfate is very low in the hormone-independent cell lines; however, comparative kinetic studies carried out after homogenization of MCF-7 and MDA-MB-436 cells show that sulfatase activity is similar, suggesting different mechanisms in the hydrolysis of estrone sulfate in hormone-dependent and hormone-independent cell lines. Progesterone also provokes a significant decrease in uptake and in estradiol levels after incubation of [3H]-estrone sulfate with the MCF-7 cell line. It is concluded that estrogen sulfates can play an important role in the biologic response of estrogens in breast cancer and that control of sulfatase and 17-hydroxysteroid dehydrogenase activities are key steps in the concentration and ability of estradiol in the mammary cancer cell line.[1]

References

 
WikiGenes - Universities