Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm.
We have characterized a 3547 bp DNA fragment from male-sterile (cms-T) maize mitochondria, designated TURF 2H3, selected because of its unique and abundant transcripts. Sequence analysis indicated that TURF 2H3 originated by recombinations among portions of the flanking and/or coding regions of the maize mitochondrial 26S ribosomal gene, the ATPase subunit 6 gene, and the chloroplast tRNA-Arg gene. TURF 2H3 contains two long open reading frames that could encode polypeptides of 12,961 Mr and 24,675 Mr. The larger open reading frame hybridizes to transcripts in all maize cytoplasms, the smaller to transcripts only in T cytoplasm. TURF 2H3 transcripts appear to be uniquely altered in cms-T plants restored to fertility by the nuclear restorer genes Rf1 and Rf2. A possible relationship between TURF 2H3, nuclear restorer genes, and the male sterility trait in T cytoplasm is suggested.[1]References
- Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Dewey, R.E., Levings, C.S., Timothy, D.H. Cell (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg