The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characteristics of bleomycin-resistant phenotypes of human cell sublines and circumvention of bleomycin resistance by liblomycin.

Three bleomycin (BLM)-resistant sublines were isolated from a human head and neck squamous cell carcinoma cell line (A-253); these sublines (C-10, D-10, and G-11) were 4-, 9-, and 21-fold resistant to BLM A2, respectively. These sublines were selectively resistant to other members of the BLM class, namely BLM B2, peplomycin, talisomycin S10b, and bleomycinic acid; none of the sublines displayed cross-resistance to vincristine, doxorubicin, cis-diamminedichloroplatinum or melphalan; only one subline (G-11) was cross-resistant to X-irradiation. None of the BLM-resistant cell lines demonstrated resistance to the novel BLM analogue liblomycin, which contains a lipophilic terminal amine. The cell cycle distributions of the clonally derived BLM-resistant cell populations were similar to the distribution of the parental cell population. In vitro BLM hydrolase activity in homogenates of D-10 and G-11 BLM-resistant cell lines was two- to threefold higher than that in homogenates of A-253 or C-10 cells. Nonetheless, no deamido BLM A2 was found associated with any cell type or in the culture medium and more than 80% of the radioactivity in all cells appeared as unmetabolized BLM A2 by high pressure liquid chromatography. Thus, the appearance of large quantities of the deamido BLM metabolite was not a prominent feature of acquired resistance to BLM in these human tumor cells. The cellular accumulation of radiolabeled BLM A2 by C-10 and G-11 cells during a 1-h incubation with [3H]BLM A2 was 1/2 that seen with A-253 and D-10 cells. C-10 cells maintained a lower nuclear content of radioactivity than A-253, G-11, or D-10 cells. Initial single strand DNA damage, based upon alkaline elution analysis, also was lower in C-10 cells compared to A-253 cells. D-10 cells, in contrast, exhibited high initial genomic DNA damage but demonstrated a greater repair rate than either A-253 or C-10 cells. Thus, multiple BLM-resistant phenotypes can be obtained from a population of human squamous carcinoma cells, and modification of the terminal amine in the BLM molecule can produce compounds capable of circumventing all of these BLM-resistant phenotypes. Liblomycin, which appears to be a nonclassical BLM, may be a useful therapeutic agent with a spectrum of activity distinct from other members of the BLM class.[1]

References

  1. Characteristics of bleomycin-resistant phenotypes of human cell sublines and circumvention of bleomycin resistance by liblomycin. Lazo, J.S., Braun, I.D., Labaree, D.C., Schisselbauer, J.C., Meandzija, B., Newman, R.A., Kennedy, K.A. Cancer Res. (1989) [Pubmed]
 
WikiGenes - Universities