The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Arachidonic acid metabolism in isolated pancreatic islets. V. The enantiomeric composition of 12-hydroxy-5,8,10,14-eicosatetraenoic acid indicates synthesis by a 12-lipoxygenase rather than a monooxygenase.

Recent evidence indicates that the arachidonate metabolite 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) or its precursor may act as a second messenger in stimulus-response coupling in a variety of cells including Aplysia neurons, adrenal glomerulosa cells, and pancreatic islets. The compound 12(S)-HETE is generated from the precursor 12(S)-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12(S)-HPETE), which is a product of the 12-lipoxygenase enzyme. Some cells have recently been found to produce the enantiomer 12(R)-HETE, apparently via a cytochrome P-450 monooxygenase, and the biologic actions of 12(R)-HETE and 12(S)-HETE differ. We have examined the stereochemistry of 12-HETE from isolated pancreatic islets both radiochemically and by a new mass spectrometric method capable of quantitating subnanogram amounts of 12-HETE stereoisomers. Endogenous 12-HETE from islets was found to be exclusively the S-isomer. D-Glucose stimulated both insulin secretion and islet accumulation of 12(S)-HETE but not of 12(R)-HETE. Pharmacologic inhibition of islet 12-HETE biosynthesis also suppressed glucose-induced insulin secretion. These findings suggest that islet 12-HETE is a product of a 12-lipoxygenase rather than of a cytochrome P-450 monooxygenase and further implicate 12-lipoxygenase products in stimulus-secretion coupling.[1]

References

 
WikiGenes - Universities