The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Comparative transcriptome analysis reveals that lactose acts as an inducer and provides proper carbon sources for enhancing exopolysaccharide yield in the deep-sea bacterium Zunongwangia profunda SM-A87.

Many marine bacteria secrete exopolysaccharides (EPSs) that have important ecological and physiological functions. Numerous nutritional and environmental factors influence bacterial EPS production. However, the regulatory mechanisms of EPS production are poorly understood. The deep-sea Bacteroidetes bacterium Zunongwangia profunda SM-A87 can produce high quantities of EPS, and its EPS production is enhanced significantly by lactose. Here, we studied the reasons behind the significant advantage that lactose has over other carbon sources in EPS production in SM-A87. RNA-seq technologies were used to study lactose-regulated genes in SM-A87. The expression level of genes within the EPS gene cluster was up-regulated when lactose was added. Supplement of lactose also influenced the expression of genes located outside the EPS gene cluster that are also involved in EPS biosynthesis. The major glycosyl components of SM-A87 EPS are mannose, glucose and galactose. Genomic metabolic pathway analyses showed that the EPS precursor GDP-mannose can be synthesized from glucose, while the precursor UDP-glucose must be synthesized from galactose. Lactose can provide glucose and galactose simultaneously and prevent glucose inhibition. Lactose can also greatly stimulate the growth of SM-A87. Taken together, lactose acts not only as an inducer but also as a carbohydrate source for EPS production. This research broadens our knowledge of the regulation of EPS production in marine bacteria. [1]

References

  1. Comparative transcriptome analysis reveals that lactose acts as an inducer and provides proper carbon sources for enhancing exopolysaccharide yield in the deep-sea bacterium Zunongwangia profunda SM-A87. Qin, Q.L., Li, Y., Sun, M.L., Rong, J.C., Liu, S.B., Chen, X.L., Su, H.N., Zhou, B.C., Xie, B.B., Zhang, Y.Z., Zhang, X.Y. PLoS. ONE (2015) [Pubmed]
 
WikiGenes - Universities