The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Subcellular distribution of titanium in the liver after treatment with the antitumor agent titanocene dichloride. A study using electron spectroscopic imaging.

In the present study, the subcellular distribution of titanium in the liver of mice was determined 24 and 48 h after application of a therapeutic (ED100; ED = effective dose) and a toxic (LD25; LD = lethal dose) dose (60 and 80 mg/kg, respectively) of the antitumor agent titanocene dichloride by electron spectroscopic imaging at the ultrastructural level. At 24 h, titanium was mainly accumulated in the cytoplasm of endothelial and Kupffer cells, lining the hepatic sinusoids. Titanium was detected in the nucleoli and the euchromatin of liver cells, packaged as granules together with phosphorus and oxygen. One day later titanium was still present in cytoplasmic inclusions within endothelial and Kupffer cells, whereas in hepatocyte nucleoli only a few deposits of titanium were observed at 48 h. At this time titanium was mainly accumulated in the form of highly condensed granules in the euchromatin and the perinucleolar heterochromatin. It was found in the cytoplasm of liver cells, incorporated into cytoplasmic inclusion bodies which probably represent lysosomes. Sometimes these inclusions were situated near bile canaliculi and occasionally extruded their content into the lumen of bile capillaries. This observation suggests a mainly biliary elimination of titanium-containing metabolites. These results confirm electron spectroscopic imaging to be an appropriate method for determining the subcellular distribution of light and medium-weight elements within biological tissues. Insights into the cellular mode of action of titanocene complexes or titanocene metabolites can be deduced from the findings of the present study.[1]


WikiGenes - Universities