The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Inclusion Bodies

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Inclusion Bodies

 

Psychiatry related information on Inclusion Bodies

 

High impact information on Inclusion Bodies

 

Chemical compound and disease context of Inclusion Bodies

 

Biological context of Inclusion Bodies

 

Anatomical context of Inclusion Bodies

 

Associations of Inclusion Bodies with chemical compounds

  • Lipid bodies, nonmembrane-bound cytoplasmic inclusions, serve as repositories of esterified arachidonate and are increased in cells associated with inflammatory reactions [27].
  • Unfolding of labeled tetra-Cys CRABP I is accompanied by enhancement of FlAsH fluorescence, which made it possible to determine the free energy of unfolding of this protein by urea titration in cells and to follow in real time the formation of inclusion bodies by a slow-folding, aggregationprone mutant (FlAsH-labeled P39A tetra-Cys CRABP I) [28].
  • Inclusion bodies containing beta-lactamase could be refolded at high yields of active protein, even without added GdmHCl [29].
  • 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads [30].
  • A hallmark of these so-called polyglutamine diseases is the presence of ubiquitylated inclusion bodies, which sequester various components of the 19S and 20S proteasomes [20].
 

Gene context of Inclusion Bodies

 

Analytical, diagnostic and therapeutic context of Inclusion Bodies

References

  1. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Watts, G.D., Wymer, J., Kovach, M.J., Mehta, S.G., Mumm, S., Darvish, D., Pestronk, A., Whyte, M.P., Kimonis, V.E. Nat. Genet. (2004) [Pubmed]
  2. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Kihm, A.J., Kong, Y., Hong, W., Russell, J.E., Rouda, S., Adachi, K., Simon, M.C., Blobel, G.A., Weiss, M.J. Nature (2002) [Pubmed]
  3. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Chen, L., Feany, M.B. Nat. Neurosci. (2005) [Pubmed]
  4. beta-Amyloid protein immunoreactivity in muscle of patients with inclusion-body myositis. Askanas, V., Engel, W.K., Alvarez, R.B., Glenner, G.G. Lancet (1992) [Pubmed]
  5. The inactive form of recA protein: the 'compact' structure. Ruigrok, R.W., Bohrmann, B., Hewat, E., Engel, A., Kellenberger, E., DiCapua, E. EMBO J. (1993) [Pubmed]
  6. Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Muchowski, P.J., Ning, K., D'Souza-Schorey, C., Fields, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., Mayer, R.J. J. Pathol. (1988) [Pubmed]
  8. Prion protein expression in mammalian lenses. Frederikse, P.H., Zigler, S.J., Farnsworth, P.N., Carper, D.A. Curr. Eye Res. (2000) [Pubmed]
  9. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Brenner, M., Johnson, A.B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J.E., Messing, A. Nat. Genet. (2001) [Pubmed]
  10. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Arikawa-Hirasawa, E., Wilcox, W.R., Le, A.H., Silverman, N., Govindraj, P., Hassell, J.R., Yamada, Y. Nat. Genet. (2001) [Pubmed]
  11. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Huynh, D.P., Figueroa, K., Hoang, N., Pulst, S.M. Nat. Genet. (2000) [Pubmed]
  12. Characterization of alpha1-antitrypsin in the inclusion bodies from the liver in alpha 1-antitrypsin deficiency. Jeppsson, J.O., Larsson, C., Eriksson, S. N. Engl. J. Med. (1975) [Pubmed]
  13. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Echtay, K.S., Winkler, E., Klingenberg, M. Nature (2000) [Pubmed]
  14. Amiodarone- and desethylamiodarone-induced myelinoid inclusion bodies and toxicity in cultured rat hepatocytes. Somani, P., Bandyopadhyay, S., Klaunig, J.E., Gross, S.A. Hepatology (1990) [Pubmed]
  15. A novel mutation in the GNE gene and a linkage disequilibrium in Japanese pedigrees. Arai, A., Tanaka, K., Ikeuchi, T., Igarashi, S., Kobayashi, H., Asaka, T., Date, H., Saito, M., Tanaka, H., Kawasaki, S., Uyama, E., Mizusawa, H., Fukuhara, N., Tsuji, S. Ann. Neurol. (2002) [Pubmed]
  16. Carboxyl terminus is essential for intracellular folding of chloramphenicol acetyltransferase. Robben, J., Van der Schueren, J., Volckaert, G. J. Biol. Chem. (1993) [Pubmed]
  17. Independent folding and ligand specificity of the C2 calcium-dependent lipid binding domain of cytosolic phospholipase A2. Nalefski, E.A., McDonagh, T., Somers, W., Seehra, J., Falke, J.J., Clark, J.D. J. Biol. Chem. (1998) [Pubmed]
  18. Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli. Hunke, S., Betton, J.M. Mol. Microbiol. (2003) [Pubmed]
  19. Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Schneider, E.L., Thomas, J.G., Bassuk, J.A., Sage, E.H., Baneyx, F. Nat. Biotechnol. (1997) [Pubmed]
  20. Proteasome impairment does not contribute to pathogenesis in R6/2 Huntington's disease mice: exclusion of proteasome activator REGgamma as a therapeutic target. Bett, J.S., Goellner, G.M., Woodman, B., Pratt, G., Rechsteiner, M., Bates, G.P. Hum. Mol. Genet. (2006) [Pubmed]
  21. Inclusion body beta-thalassemia trait in a Swiss family is caused by an abnormal hemoglobin (Geneva) with an altered and extended beta chain carboxy-terminus due to a modification in codon beta 114. Beris, P., Miescher, P.A., Diaz-Chico, J.C., Han, I.S., Kutlar, A., Hu, H., Wilson, J.B., Huisman, T.H. Blood (1988) [Pubmed]
  22. Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Schröder, R., Watts, G.D., Mehta, S.G., Evert, B.O., Broich, P., Fliessbach, K., Pauls, K., Hans, V.H., Kimonis, V., Thal, D.R. Ann. Neurol. (2005) [Pubmed]
  23. Active caspases and cleaved cytokeratins are sequestered into cytoplasmic inclusions in TRAIL-induced apoptosis. MacFarlane, M., Merrison, W., Dinsdale, D., Cohen, G.M. J. Cell Biol. (2000) [Pubmed]
  24. Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle. Askanas, V., McFerrin, J., Baqué, S., Alvarez, R.B., Sarkozi, E., Engel, W.K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. A bacterially expressed single-chain Fv construct from the 2B4 T-cell receptor. Kurucz, I., Jost, C.R., George, A.J., Andrew, S.M., Segal, D.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Expression of the Chediak-Higashi lysosomal abnormality in human peripheral blood lymphocyte subpopulations. Grossi, C.E., Crist, W.M., Abo, T., Velardi, A., Cooper, M.D. Blood (1985) [Pubmed]
  27. Cytoplasmic lipid bodies of neutrophils: formation induced by cis-unsaturated fatty acids and mediated by protein kinase C. Weller, P.F., Ryeom, S.W., Picard, S.T., Ackerman, S.J., Dvorak, A.M. J. Cell Biol. (1991) [Pubmed]
  28. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Ignatova, Z., Gierasch, L.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  29. High pressure fosters protein refolding from aggregates at high concentrations. St John, R.J., Carpenter, J.F., Randolph, T.W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  30. NMR study of a membrane protein in detergent-free aqueous solution. Zoonens, M., Catoire, L.J., Giusti, F., Popot, J.L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  31. Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Klimczak, L.J., Collinge, M.A., Farini, D., Giuliano, G., Walker, J.C., Cashmore, A.R. Plant Cell (1995) [Pubmed]
  32. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Echtay, K.S., Winkler, E., Frischmuth, K., Klingenberg, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  33. Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson's disease. Marx, F.P., Holzmann, C., Strauss, K.M., Li, L., Eberhardt, O., Gerhardt, E., Cookson, M.R., Hernandez, D., Farrer, M.J., Kachergus, J., Engelender, S., Ross, C.A., Berger, K., Schöls, L., Schulz, J.B., Riess, O., Krüger, R. Hum. Mol. Genet. (2003) [Pubmed]
  34. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice. Schilling, G., Savonenko, A.V., Klevytska, A., Morton, J.L., Tucker, S.M., Poirier, M., Gale, A., Chan, N., Gonzales, V., Slunt, H.H., Coonfield, M.L., Jenkins, N.A., Copeland, N.G., Ross, C.A., Borchelt, D.R. Hum. Mol. Genet. (2004) [Pubmed]
  35. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Ganesh, S., Delgado-Escueta, A.V., Sakamoto, T., Avila, M.R., Machado-Salas, J., Hoshii, Y., Akagi, T., Gomi, H., Suzuki, T., Amano, K., Agarwala, K.L., Hasegawa, Y., Bai, D.S., Ishihara, T., Hashikawa, T., Itohara, S., Cornford, E.M., Niki, H., Yamakawa, K. Hum. Mol. Genet. (2002) [Pubmed]
  36. Cytotoxic interactions of cardioactive cationic amphiphilic compounds in primary rat hepatocytes in culture. Bandyopadhyay, S., Klaunig, J.E., Somani, P. Hepatology (1990) [Pubmed]
  37. Chronic airflow obstruction in Fabry's disease. Rosenberg, D.M., Ferrans, V.J., Fulmer, J.D., Line, B.R., Barranger, J.A., Brady, R.O., Crystal, R.G. Am. J. Med. (1980) [Pubmed]
  38. Inclusion body myositis: explanation for poor response to immunosuppressive therapy. Barohn, R.J., Amato, A.A., Sahenk, Z., Kissel, J.T., Mendell, J.R. Neurology (1995) [Pubmed]
  39. Role of carbohydrate structures in the binding of beta1-latency-associated peptide to ligands. Yang, Y., Dignam, J.D., Gentry, L.E. Biochemistry (1997) [Pubmed]
 
WikiGenes - Universities