The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bile Canaliculi

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bile Canaliculi

 

High impact information on Bile Canaliculi

 

Chemical compound and disease context of Bile Canaliculi

 

Biological context of Bile Canaliculi

  • In conclusion, genipin may enhance the bile acid-independent secretory capacity of hepatocytes, mainly by stimulation of exocytosis and insertion of Mrp2 in the bile canaliculi [12].
  • These differences could be the result of the fascioliasis-induced decrease in the hepatic uptake of tetracycline and the limited active transport for its output into bile canaliculi [13].
  • CONCLUSIONS: This analysis provides a model which accurately characterized the increase in paclitaxel exposure, which is most likely to be due to P-gp inhibition in the bile canaliculi, in the presence of zosuquidar 3HCl (Cmax > 350 microg x l(-1)) and is predictive of paclitaxel pharmacokinetics following a 3 h infusion [14].
 

Anatomical context of Bile Canaliculi

  • Morphometric analysis of electron micrographs of rat livers demonstrated a marked increase (p less than 0.001) in the number of lysosomelike vesicles and autophagic vacuoles in the vicinity of bile canaliculi after chloroquine administration; also, the number of canalicular microvilli decreased (p less than 0.003) after chloroquine treatment [15].
  • In the light microscope, specific reaction product was present in all hepatocytes of experimental sections as intense brown to black spots whose locations corresponded to the distribution of the Golgi apparatus: along the bile canaliculi, near the nuclei, and between the nuclei and bile canaliculi [16].
  • Here, we show that MATE1, a human and mouse orthologue of the multidrug and toxin extrusion family conferring multidrug resistance on bacteria, is primarily expressed in the kidney and liver, where it is localized to the luminal membranes of the urinary tubules and bile canaliculi [17].
  • Additionally, these mutants develop defects in the bile canaliculi and have marked biliary paucity, suggesting that vps18 also functions to traffic vesicles to the hepatocyte apical membrane and may play a role in the development of the intrahepatic biliary tree [18].
  • To further study the role of the cytoskeleton in canalicular contraction, we observed the contraction of bile canaliculi (BC) induced by vasopressin (VP) in cultured differentiated hepatocytes treated with several agents that selectively rearrange the cytoskeleton [19].
 

Associations of Bile Canaliculi with chemical compounds

 

Gene context of Bile Canaliculi

  • After diffusion (bound by intracellular bile salt-binding proteins) to the canalicular membrane, monoanionic bile salts are secreted into bile canaliculi by the bile salt export pump Bsep (rodents) or BSEP (humans) [25].
  • The major physiological role of MRP2 is to transport conjugated metabolites into the bile canaliculus, whereas MRP3 is localized in the basolateral membrane of the hepatocytes and transports similar metabolites back to the bloodstream [26].
  • In HCCs, the expression of BGP was predominantly found in the well-differentiated type, where the bile canaliculi and the apical portion of pseudoglands were positively stained, although their staining intensity and stained area were lower and more limited, respectively, than those of non-cancerous regions [27].
  • Targeting of aminopeptidase N to bile canaliculi correlates with secretory activities of the developing canalicular domain [28].
  • These studies reveal that the bile canaliculus in normal rats contains an ATP-dependent organic anion transport system that is functionally absent in TR- mutant rats [29].
 

Analytical, diagnostic and therapeutic context of Bile Canaliculi

References

  1. Cyclosporin, the biology of the bile canaliculus, and cholestasis. Arias, I.M. Gastroenterology (1993) [Pubmed]
  2. Erythrocyte membrane transport of glutathione conjugates and oxidized glutathione in the Dubin-Johnson syndrome and in rats with hereditary hyperbilirubinemia. Board, P., Nishida, T., Gatmaitan, Z., Che, M., Arias, I.M. Hepatology (1992) [Pubmed]
  3. Enhancement of phenotypic expression in cultured malignant liver epithelial cells by a complex medium. Gunn, J.M., Shinozuka, H., Williams, G.M. J. Cell. Physiol. (1976) [Pubmed]
  4. Effects of chronic choleretic infusions of bile acids on the membrane of the bile canaliculus. A biochemical and morphologic study. Nemchausky, B.A., Layden, T.J., Boyer, J.L. Lab. Invest. (1977) [Pubmed]
  5. Expression of aminopeptidase N in bile canaliculi: a predictor of clinical outcome in biliary atresia and a potential tool to implicate the mechanism of biliary atresia. Liu, C., Chiu, J.H., Chin, T., Wang, L.S., Tai, C.H., Li, A.F., Wei, C. J. Surg. Res. (2001) [Pubmed]
  6. Bile formation in the rat: the role of the paracellular shunt pathway. Layden, T.J., Elias, E., Boyer, J.L. J. Clin. Invest. (1978) [Pubmed]
  7. Relationship between bile flow and Na+, K+-adenosinetriphosphatase in liver plasma membranes enriched in bile canaliculi. Reichen, J., Paumgartner, G. J. Clin. Invest. (1977) [Pubmed]
  8. The effect of thyroid hormone on bile salt-independent bile flow and Na+, K+ -ATPase activity in liver plasma membranes enriched in bile canaliculi. Layden, T.J., Boyer, J.L. J. Clin. Invest. (1976) [Pubmed]
  9. The choleretic effect of iodipamide. Feld, G.K., Loeb, P.M., Berk, R.N., Wheeler, H.O. J. Clin. Invest. (1975) [Pubmed]
  10. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Roelofsen, H., Wolters, H., Van Luyn, M.J., Miura, N., Kuipers, F., Vonk, R.J. Gastroenterology (2000) [Pubmed]
  11. Hepatocyte ultrastructural aspects after preoperative biliary drainage in pancreatic cancer patients with cholestatic jaundice. Fiori, E., Macchiarelli, G., Schillaci, A., Lamazza, A., Burza, A., Paparelli, C., Cavallaro, A., Cangemi, V. Anticancer Res. (2003) [Pubmed]
  12. Genipin enhances Mrp2 (Abcc2)-mediated bile formation and organic anion transport in rat liver. Shoda, J., Miura, T., Utsunomiya, H., Oda, K., Yamamoto, M., Kano, M., Ikegami, T., Tanaka, N., Akita, H., Ito, K., Suzuki, H., Sugiyama, Y. Hepatology (2004) [Pubmed]
  13. Incidence of experimental fascioliasis on hepatic disposition of [3H]tetracycline and [14C]rafoxanide in rats. Galtier, P., Larrieu, G., Franc, M. Journal of pharmaceutical sciences. (1985) [Pubmed]
  14. A population pharmacokinetic model for paclitaxel in the presence of a novel P-gp modulator, Zosuquidar Trihydrochloride (LY335979). Callies, S., de Alwis, D.P., Harris, A., Vasey, P., Beijnen, J.H., Schellens, J.H., Burgess, M., Aarons, L. British journal of clinical pharmacology. (2003) [Pubmed]
  15. Effect of chloroquine on the form and function of hepatocyte lysosomes. Morphologic modifications and physiologic alterations related to the biliary excretion of lipids and proteins. Sewell, R.B., Barham, S.S., LaRusso, N.F. Gastroenterology (1983) [Pubmed]
  16. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. Alexander, C.A., Hamilton, R.L., Havel, R.J. J. Cell Biol. (1976) [Pubmed]
  17. A human transporter protein that mediates the final excretion step for toxic organic cations. Otsuka, M., Matsumoto, T., Morimoto, R., Arioka, S., Omote, H., Moriyama, Y. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. A genetic screen in zebrafish identifies the mutants vps18, nf2 and foie gras as models of liver disease. Sadler, K.C., Amsterdam, A., Soroka, C., Boyer, J., Hopkins, N. Development (2005) [Pubmed]
  19. Role of cytoskeleton in canalicular contraction in cultured differentiated hepatocytes. Kawahara, H., French, S.W. Am. J. Pathol. (1990) [Pubmed]
  20. WIF-B cells: an in vitro model for studies of hepatocyte polarity. Ihrke, G., Neufeld, E.B., Meads, T., Shanks, M.R., Cassio, D., Laurent, M., Schroer, T.A., Pagano, R.E., Hubbard, A.L. J. Cell Biol. (1993) [Pubmed]
  21. Histochemical demonstration of sinusoidal gamma-glutamyltransferase activity by substrate protection fixation: comparative studies in rat and guinea pig liver. Lança, A.J., Israel, Y. Hepatology (1991) [Pubmed]
  22. Biliary cholesterol hypersecretion in gallstone-susceptible mice is associated with hepatic up-regulation of the high-density lipoprotein receptor SRBI. Fuchs, M., Ivandic, B., Müller, O., Schalla, C., Scheibner, J., Bartsch, P., Stange, E.F. Hepatology (2001) [Pubmed]
  23. Detection of cell-CAM 105 in the pericanalicular domain of the rat hepatocyte plasma membrane. Mowery, J., Hixson, D.C. Hepatology (1991) [Pubmed]
  24. Biosynthesis and turnover of a Mr = 110,000 glycoprotein localized to the hepatocyte bile canaliculus. Diamond, M., Petell, J.K., Doyle, D. J. Biol. Chem. (1987) [Pubmed]
  25. Bile salt transporters. Meier, P.J., Stieger, B. Annu. Rev. Physiol. (2002) [Pubmed]
  26. Differential modulation of the human liver conjugate transporters MRP2 and MRP3 by bile acids and organic anions. Bodo, A., Bakos, E., Szeri, F., Varadi, A., Sarkadi, B. J. Biol. Chem. (2003) [Pubmed]
  27. Decreased expression of biliary glycoprotein in hepatocellular carcinomas. Tanaka, K., Hinoda, Y., Takahashi, H., Sakamoto, H., Nakajima, Y., Imai, K. Int. J. Cancer (1997) [Pubmed]
  28. Targeting of aminopeptidase N to bile canaliculi correlates with secretory activities of the developing canalicular domain. Lian, W.N., Tsai, J.W., Yu, P.M., Wu, T.W., Yang, S.C., Chau, Y.P., Lin, C.H. Hepatology (1999) [Pubmed]
  29. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Kitamura, T., Jansen, P., Hardenbrook, C., Kamimoto, Y., Gatmaitan, Z., Arias, I.M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  30. Hepatocyte tight-junctional permeability is increased in rat experimental colitis. Lora, L., Mazzon, E., Martines, D., Fries, W., Muraca, M., Martin, A., d'Odorico, A., Naccarato, R., Citi, S. Gastroenterology (1997) [Pubmed]
  31. Isolation and characterization of a Mr = 110,000 glycoprotein localized to the hepatocyte bile canaliculus. Petell, J.K., Diamond, M., Hong, W.J., Bujanover, Y., Amarri, S., Pittschieler, K., Doyle, D. J. Biol. Chem. (1987) [Pubmed]
  32. Effect of biliary pressure versus high bile acid flux on the permeability of hepatocellular tight junction. Toyota, N., Miyai, K., Hardison, W.G. Lab. Invest. (1984) [Pubmed]
  33. Alterations of tight and gap junctions in mouse hepatocytes following administration of colchicine. Rassat, J., Robenek, H., Themann, H. Cell Tissue Res. (1982) [Pubmed]
  34. Immunohistochemical localization of metallothionein in developing rat tissues. Nishimura, H., Nishimura, N., Tohyama, C. J. Histochem. Cytochem. (1989) [Pubmed]
 
WikiGenes - Universities