Monovalent cation-induced structure of telomeric DNA: the G-quartet model.
We have investigated the structures formed by oligonucleotides composed of two or four repeats of the telomeric sequences from Oxytricha and Tetrahymena. The Oxytricha four-repeat molecule (d(T4G4)4 = Oxy-4) forms structures with increased electrophoretic mobility in nondenaturing gels containing Na+, K+, or Cs+, but not in gels containing Li+ or no added salt. Formation of the folded structure results in protection of a set of dG's from methylation by dimethyl sulfate. Efficient UV-induced cross-links are observed in Oxy-4 and the related sequence from Tetrahymena (d(T2G4)4 = Tet-4), and join thymidine residues in different repeats. Models proposed to account for these data involve G-quartets, hydrogen-bonded structures formed from four guanosine residues in a square-planar array. We propose that the G-quartet structure must be dealt with in vivo by the telomere replication machinery.[1]References
- Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Williamson, J.R., Raghuraman, M.K., Cech, T.R. Cell (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg