The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae.

A Saccharomyces cerevisiae sterol auxotroph, SPK14 (a hem1 erg6 erg7 ura), was constructed to test the ability of selected C-5,6 unsaturated sterols at growth-limiting concentrations to spark growth on bulk cholestanol. The native sterol, ergosterol, initiated growth faster and allowed a greater cell yield than did other sterols selectively altered in one or more features of the sterol. Although the C-5,6 unsaturation is required for the sparking function, the presence of the C-22 unsaturation was found to facilitate sparking far better than did the C-7 unsaturation, whereas the C-24 methyl was the least important group. The addition of delta-aminolevulinic acid to the medium allowed the sparking of FY3 (hem1 erg7 ura) on bulk cholestanol due to the derepression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and the production of endogenous ergosterol. The optimal concentration of delta-aminolevulinic acid to spark growth was 800 ng/ml, whereas higher concentrations caused a growth inhibition. The growth yield of FY3 reached a plateau maximum at about 5 micrograms/ml when the bulk cholestanol was varied in the presence of 10 ng of sparking erogosterol per ml.[1]


WikiGenes - Universities