The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN43195     (3S,9R,10R,13S,14R,17R)-17- [(2S,5R)-5,6...

Synonyms: 57-87-4, 5,7,22-Ergostatrien-3|A-ol, 3|A-Hydroxy-5,7,22-ergostatriene
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ERGOSTEROL


High impact information on ERGOSTEROL


Chemical compound and disease context of ERGOSTEROL


Biological context of ERGOSTEROL

  • This indicates that modulation of ergosterol level plays a key role in adaptation to oxidative stress [7].
  • Ergosterol has been shown to be required for endocytosis and homotypic vacuole fusion, providing a link between Mot3 and these processes [10].
  • The data suggest that hormonal levels of ergosterol (effective concentration, approximately equal to 1 nM) participate in a signaling process associated with a protein kinase possibly involved in yeast cell cycle control [16].
  • An ergosterol auxotroph, erg25, which fails to demethylate and concomitantly accumulates 4,4-dimethylzy-mosterol, was isolated after mutagenesis [17].
  • Stimulation of a protein kinase associated with immune complexes of yeast protein and anti-pp60v-src shows a positive correlation with exit from the G1 phase following ergosterol addition [16].

Anatomical context of ERGOSTEROL

  • The need for ergosterol for vacuole priming underscores the role of lipids in organizing the membrane elements of this complex reaction [18].
  • Although erg6 delta cells are unable to methylate ergosterol precursors at C-24, they exhibit normal vegatative growth, suggesting that C-28 sterols are not essential in S. cerevisiae [19].
  • Slow diffusion requires neither the cell wall nor polymerized actin, but it is affected in the ergosterol synthesis mutant erg6 [20].
  • Purification of the cytosolic mutant CPR indicated properties identical to native CPR and an ability to reconstitute ergosterol biosynthesis when added to a cell-free system, as well as to allow reconstitution of activity with purified CYP61, sterol 22-desaturase [21].
  • We demonstrate the metabolism of ergosterol by cytochrome P450scc in either a reconstituted system or isolated adrenal mitochondria [22].

Associations of ERGOSTEROL with other chemical compounds


Gene context of ERGOSTEROL


Analytical, diagnostic and therapeutic context of ERGOSTEROL


  1. PDR16 and PDR17, two homologous genes of Saccharomyces cerevisiae, affect lipid biosynthesis and resistance to multiple drugs. van den Hazel, H.B., Pichler, H., do Valle Matta, M.A., Leitner, E., Goffeau, A., Daum, G. J. Biol. Chem. (1999) [Pubmed]
  2. The mechanism of action of the new antimycotic ketoconazole. Borgers, M., Van den Bossche, H., De Brabander, M. Am. J. Med. (1983) [Pubmed]
  3. Experimental chemotherapy with combinations of ergosterol biosynthesis inhibitors in murine models of Chagas' disease. Maldonado, R.A., Molina, J., Payares, G., Urbina, J.A. Antimicrob. Agents Chemother. (1993) [Pubmed]
  4. Measurement of 3 beta-hydroxysteroid delta 7-reductase activity in cultured skin fibroblasts utilizing ergosterol as a substrate: a new method for the diagnosis of the Smith-Lemli-Opitz syndrome. Honda, M., Tint, G.S., Honda, A., Batta, A.K., Chen, T.S., Shefer, S., Salen, G. J. Lipid Res. (1996) [Pubmed]
  5. Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Arthington-Skaggs, B.A., Warnock, D.W., Morrison, C.J. Antimicrob. Agents Chemother. (2000) [Pubmed]
  6. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. Raychaudhuri, S., Im, Y.J., Hurley, J.H., Prinz, W.A. J. Cell Biol. (2006) [Pubmed]
  7. Repression of ergosterol level during oxidative stress by fission yeast F-box protein Pof14 independently of SCF. Tafforeau, L., Le Blastier, S., Bamps, S., Dewez, M., Vandenhaute, J., Hermand, D. EMBO J. (2006) [Pubmed]
  8. Dynamic ergosterol- and ceramide-rich domains in the peroxisomal membrane serve as an organizing platform for peroxisome fusion. Boukh-Viner, T., Guo, T., Alexandrian, A., Cerracchio, A., Gregg, C., Haile, S., Kyskan, R., Milijevic, S., Oren, D., Solomon, J., Wong, V., Nicaud, J.M., Rachubinski, R.A., English, A.M., Titorenko, V.I. J. Cell Biol. (2005) [Pubmed]
  9. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. Umebayashi, K., Nakano, A. J. Cell Biol. (2003) [Pubmed]
  10. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. Hongay, C., Jia, N., Bard, M., Winston, F. EMBO J. (2002) [Pubmed]
  11. Structure-activity study of inhibition of amphotericin B (Fungizone) binding to sterols, toxicity to cells, and lethality to mice by esters of sucrose. Gruda, I., Milette, D., Brother, M., Kobayashi, G.S., Medoff, G., Brajtburg, J. Antimicrob. Agents Chemother. (1991) [Pubmed]
  12. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Onyewu, C., Blankenship, J.R., Del Poeta, M., Heitman, J. Antimicrob. Agents Chemother. (2003) [Pubmed]
  13. Amphotericin B-induced oxidative damage and killing of Candida albicans. Sokol-Anderson, M.L., Brajtburg, J., Medoff, G. J. Infect. Dis. (1986) [Pubmed]
  14. NADPH cytochrome P-450 oxidoreductase and susceptibility to ketoconazole. Venkateswarlu, K., Kelly, D.E., Manning, N.J., Kelly, S.L. Antimicrob. Agents Chemother. (1998) [Pubmed]
  15. Antiproliferative synergism of the allylamine SF 86-327 and ketoconazole on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Urbina, J.A., Lazardi, K., Aguirre, T., Piras, M.M., Piras, R. Antimicrob. Agents Chemother. (1988) [Pubmed]
  16. A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. Dahl, C., Biemann, H.P., Dahl, J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  17. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Bard, M., Bruner, D.A., Pierson, C.A., Lees, N.D., Biermann, B., Frye, L., Koegel, C., Barbuch, R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  18. Ergosterol is required for the Sec18/ATP-dependent priming step of homotypic vacuole fusion. Kato, M., Wickner, W. EMBO J. (2001) [Pubmed]
  19. The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., Bard, M. Mol. Cell. Biol. (1989) [Pubmed]
  20. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Valdez-Taubas, J., Pelham, H.R. Curr. Biol. (2003) [Pubmed]
  21. The N-terminal membrane domain of yeast NADPH-cytochrome P450 (CYP) oxidoreductase is not required for catalytic activity in sterol biosynthesis or in reconstitution of CYP activity. Venkateswarlu, K., Lamb, D.C., Kelly, D.E., Manning, N.J., Kelly, S.L. J. Biol. Chem. (1998) [Pubmed]
  22. Enzymatic metabolism of ergosterol by cytochrome p450scc to biologically active 17alpha,24-dihydroxyergosterol. Slominski, A., Semak, I., Zjawiony, J., Wortsman, J., Gandy, M.N., Li, J., Zbytek, B., Li, W., Tuckey, R.C. Chem. Biol. (2005) [Pubmed]
  23. Rates of amphotericin B and filipin association with sterols. A study of changes in sterol structure and phospholipid composition of vesicles. Clejan, S., Bittman, R. J. Biol. Chem. (1985) [Pubmed]
  24. The relation of heme to catalase apoprotein synthesis in yeast. Woloszczuk, W., Sprinson, D.B., Ruis, H. J. Biol. Chem. (1980) [Pubmed]
  25. LM cell growth and membrane lipid adaptation to sterol structure. Rujanavech, C., Silbert, D.F. J. Biol. Chem. (1986) [Pubmed]
  26. Isolation and characterization of an Arabidopsis thaliana cDNA encoding a delta 7-sterol-C-5-desaturase by functional complementation of a defective yeast mutant. Gachotte, D., Husselstein, T., Bard, M., Lacroute, F., Benveniste, P. Plant J. (1996) [Pubmed]
  27. A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Gachotte, D., Pierson, C.A., Lees, N.D., Barbuch, R., Koegel, C., Bard, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  28. Protein-protein interactions among C-4 demethylation enzymes involved in yeast sterol biosynthesis. Mo, C., Valachovic, M., Randall, S.K., Nickels, J.T., Bard, M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  29. Characterization of the Saccharomyces cerevisiae ERG26 gene encoding the C-3 sterol dehydrogenase (C-4 decarboxylase) involved in sterol biosynthesis. Gachotte, D., Barbuch, R., Gaylor, J., Nickel, E., Bard, M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  30. Multiple regulatory elements control expression of the gene encoding the Saccharomyces cerevisiae cytochrome P450, lanosterol 14 alpha-demethylase (ERG11). Turi, T.G., Loper, J.C. J. Biol. Chem. (1992) [Pubmed]
  31. Inhibition of sterol synthesis by delta 5-sterols in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P-450. Nes, W.R., Dhanuka, I.C. J. Biol. Chem. (1988) [Pubmed]
  32. Differences in the interaction of the polyene antibiotic amphotericin B with cholesterol- or ergosterol-containing phospholipid vesicles. A circular dichroism and permeability study. Vertut-Croquin, A., Bolard, J., Chabbert, M., Gary-Bobo, C. Biochemistry (1983) [Pubmed]
  33. A Small Subpopulation of Blastospores in Candida albicans Biofilms Exhibit Resistance to Amphotericin B Associated with Differential Regulation of Ergosterol and {beta}-1,6-Glucan Pathway Genes. Khot, P.D., Suci, P.A., Miller, R.L., Nelson, R.D., Tyler, B.J. Antimicrob. Agents Chemother. (2006) [Pubmed]
  34. Unexpected Link between Iron and Drug Resistance of Candida spp.: Iron Depletion Enhances Membrane Fluidity and Drug Diffusion, Leading to Drug-Susceptible Cells. Prasad, T., Chandra, A., Mukhopadhyay, C.K., Prasad, R. Antimicrob. Agents Chemother. (2006) [Pubmed]
  35. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Hsueh, Y.W., Gilbert, K., Trandum, C., Zuckermann, M., Thewalt, J. Biophys. J. (2005) [Pubmed]
WikiGenes - Universities