The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

ERG7  -  lanosterol synthase ERG7

Saccharomyces cerevisiae S288c

Synonyms: 2,3-epoxysqualene--lanosterol cyclase, Lanosterol synthase, OSC, Oxidosqualene--lanosterol cyclase, YHR072W
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ERG7

  • Recently, a number of inhibitors of the enzyme oxidosqualene cyclase (OSC; EC 5.4.99.7), a key enzyme in sterol biosynthesis, were shown to inhibit in mammalian cells the multiplication of Trypanosoma cruzi, the parasite agent of Chagas' disease [1].
 

High impact information on ERG7

 

Biological context of ERG7

 

Anatomical context of ERG7

 

Associations of ERG7 with chemical compounds

 

Enzymatic interactions of ERG7

 

Other interactions of ERG7

 

Analytical, diagnostic and therapeutic context of ERG7

  • Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase [3].
  • Here, we present evidence that Erg7p is almost exclusively associated with this compartment as shown by analysis of enzymatic activity, Western blot analysis, and in vivo localization of Erg7p-GFP [13].
  • Molecular modeling of the yeast wild-type OSC and mutants on the template structure of human OSC confirms that the channel constriction is an important aspect of the protein structure and suggests a critical structural role for Glu526 [19].

References

  1. Analogs of squalene and oxidosqualene inhibit oxidosqualene cyclase of Trypanosoma cruzi expressed in Saccharomyces cerevisiae. Oliaro-Bosso, S., Ceruti, M., Balliano, G., Milla, P., Rocco, F., Viola, F. Lipids (2005) [Pubmed]
  2. Isolation and characterization of the gene encoding 2,3-oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae. Shi, Z., Buntel, C.J., Griffin, J.H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  3. Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Corey, E.J., Matsuda, S.P., Bartel, B. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  4. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Corey, E.J., Matsuda, S.P., Bartel, B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  5. Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. Germann, M., Gallo, C., Donahue, T., Shirzadi, R., Stukey, J., Lang, S., Ruckenstuhl, C., Oliaro-Bosso, S., McDonough, V., Turnowsky, F., Balliano, G., Nickels, J.T. J. Biol. Chem. (2005) [Pubmed]
  6. In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Mo, C., Milla, P., Athenstaedt, K., Ott, R., Balliano, G., Daum, G., Bard, M. Biochim. Biophys. Acta (2003) [Pubmed]
  7. Site-saturated mutagenesis of histidine 234 of saccharomyces cerevisiae oxidosqualene-lanosterol cyclase demonstrates dual functions in cyclization and rearrangement reactions. Wu, T.K., Liu, Y.T., Chang, C.H., Yu, M.T., Wang, H.J. J. Am. Chem. Soc. (2006) [Pubmed]
  8. Tryptophan 232 within Oxidosqualene-Lanosterol Cyclase from Saccharomyces cerevisiae Influences Rearrangement and Deprotonation but Not Cyclization Reactions. Wu, T.K., Yu, M.T., Liu, Y.T., Chang, C.H., Wang, H.J., Diau, E.W. Org. Lett. (2006) [Pubmed]
  9. Sequence of the Candida albicans erg7 gene. Roessner, C.A., Min, C., Hardin, S.H., Harris-Haller, L.W., McCollum, J.C., Scott, A.I. Gene (1993) [Pubmed]
  10. 19-Azasqualene-2,3-epoxide and its N-oxide: metabolic fate and inhibitory effect on sterol biosynthesis in Saccharomyces cerevisiae. Milla, P., Viola, F., Ceruti, M., Rocco, F., Cattel, L., Balliano, G. Lipids (1999) [Pubmed]
  11. Flux of sterol intermediates in a yeast strain deleted of the lanosterol C-14 demethylase Erg11p. Ott, R.G., Athenstaedt, K., Hrastnik, C., Leitner, E., Bergler, H., Daum, G. Biochim. Biophys. Acta (2005) [Pubmed]
  12. Subcellular localization of oxidosqualene cyclases from Arabidopsis thaliana, Trypanosoma cruzi, and Pneumocystis carinii expressed in yeast. Milla, P., Viola, F., Oliaro Bosso, S., Rocco, F., Cattel, L., Joubert, B.M., LeClair, R.J., Matsuda, S.P., Balliano, G. Lipids (2002) [Pubmed]
  13. Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. Milla, P., Athenstaedt, K., Viola, F., Oliaro-Bosso, S., Kohlwein, S.D., Daum, G., Balliano, G. J. Biol. Chem. (2002) [Pubmed]
  14. An oxysterol-derived positive signal for 3-hydroxy- 3-methylglutaryl-CoA reductase degradation in yeast. Gardner, R.G., Shan, H., Matsuda, S.P., Hampton, R.Y. J. Biol. Chem. (2001) [Pubmed]
  15. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast. Lorenz, R.T., Parks, L.W. J. Bacteriol. (1987) [Pubmed]
  16. Structural discrimination in the sparking function of sterols in the yeast Saccharomyces cerevisiae. Lorenz, R.T., Casey, W.M., Parks, L.W. J. Bacteriol. (1989) [Pubmed]
  17. Lanosterol synthase in dicotyledonous plants. Suzuki, M., Xiang, T., Ohyama, K., Seki, H., Saito, K., Muranaka, T., Hayashi, H., Katsube, Y., Kushiro, T., Shibuya, M., Ebizuka, Y. Plant Cell Physiol. (2006) [Pubmed]
  18. Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants. Zhang, H., Shibuya, M., Yokota, S., Ebizuka, Y. Biol. Pharm. Bull. (2003) [Pubmed]
  19. Access of the substrate to the active site of yeast oxidosqualene cyclase: an inhibition and site-directed mutagenesis approach. Oliaro-Bosso, S., Schulz-Gasch, T., Balliano, G., Viola, F. Chembiochem (2005) [Pubmed]
 
WikiGenes - Universities