The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Chemical modification of the RTEM-1 thiol beta-lactamase by thiol-selective reagents: evidence for activation of the primary nucleophile of the beta-lactamase active site by adjacent functional groups.

The RTEM-1 thiol beta-lactamase (Sigal, I.S., Harwood, B.G., Arentzen, R., Proc. Natl. Acad. Sci. U.S.A. 79:7157-7160, 1982) is inactivated by thiol-selective reagents such as iodoacetamide, methyl methanethiosulfonate, and 4,4'-dipyridyldisulfide, which modify the active site thiol group. The pH-rate profiles of these inactivation reactions show that there are two nucleophilic forms of the enzyme, EH2 and EH, both of which, by analogy with the situation with cysteine proteinases, probably contain the active site nucleophile in the thiolate form. The pKa of the active site thiol is therefore shown by the data to be below 4. 0. This low pKa is thought to reflect the presence of adjacent functionality which stabilizes the thiolate anion. The low nucleophilicity of the thiolate in both EH2 and EH, with respect to that of cysteine proteinases and model compounds, suggests that the thiolate of the thiol beta-lactamase is stabilized by two hydrogen-bond donors. One of these, of pKa greater than 9.0, is suggested to be the conserved and essential Lys-73 ammonium group, while the identity of the other group, of pKa around 6.7, is less clear, but may be the conserved Glu-166 carboxylic acid. beta-Lactamase activity is associated with the EH2 form, and thus the beta-lactamase active site is proposed to contain one basic or nucleophilic group (the thiolate in the thiol beta-lactamase) and two acidic (hydrogen-bond donor) groups (one of which is likely to be the above-mentioned lysine ammonium group).[1]

References

 
WikiGenes - Universities