The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Purified human erythrocyte pyrroline-5-carboxylate reductase. Preferential oxidation of NADPH.

Pyrroline-5-carboxylate reductase catalyzes the final step in proline synthesis by NAD(P)H-dependent reduction of pyrroline-5-carboxylate. We have purified and characterized this enzyme from human erythrocytes. Purification to homogeneity (approximately 600,000-fold) was accomplished by sonication, ultracentrifugation, 2',5'-ADP-Sepharose affinity chromatography, and DEAE-Sephacel ion exchange chromatography. The enzyme runs as a single band of 30,000 Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Sizing chromatography under nondenaturating conditions demonstrates activity in the 300,000-350,000 Mr range, suggesting that the native enzyme exists as a 10- to 12-mer. The purified enzyme exhibits kinetic characteristics similar to those previously described for whole red cell homogenates. The Vmax is 10-fold higher and the Km for pyrroline-5-carboxylate is 7-fold higher with NADH versus NADPH as cofactor. The affinity for NADPH is 15-fold higher than that for NADH. Erythrocyte pyrroline-5-carboxylate reductase is competitively inhibited by NADP+. Unlike the enzyme from some other sources, erythrocyte pyrroline-5-carboxylate reductase is not inhibited by proline or ATP. Double label studies using [14C]pyrroline-5-carboxylate and [3H]exNADPH in the presence of both NADH and NADPH were performed to determine the preferred source of reducing equivalents. In the presence of physiologic concentrations of pyrroline-5-carboxylate and both pyridine nucleotides, all of the reducing equivalents came from NADPH. We suggest that, in some cell types including human erythrocytes, a physiologic function of pyrroline-5-carboxylate reductase is the generation of NADP+.[1]


WikiGenes - Universities