The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

N-acetyl S-(1,2-dichlorovinyl)-L-cysteine produces a similar toxicity to S-(1,2-dichlorovinyl)-L-cysteine in rabbit renal slices: differential transport and metabolism.

Renal cortical slices were used to determine the toxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (N-acetyl-DCVC) as well as to investigate the transport and metabolism of S-(1,2-dichlorovinyl)-L-cysteine (DCVC) and the N-acetyl derivative. N-Acetyl-DCVC produced dose- and time-dependent decreases in intracellular K+ content and lactate dehydrogenase activity. Histopathology demonstrated an initial S3 lesion followed by a lesion inclusive of all proximal tubules. N-Acetyl-DCVC was shown to be transported via the organic anion system by its ability to inhibit PAH transport by the cells and the ability of probenecid to decrease uptake (80%) and toxicity of N-acetyl-DCVC. DCVC, in contrast, was not transported by the organic anion system, but may be transported by one or more amino acid systems. N-Acetyl-DCVC must be deacetylated before undergoing metabolism by beta-lyase. This process must occur since covalent binding of a 35S-labeled reactive product from N-acetyl [35S]DCVC is observed within 1 hr. Both the uptake inhibitor, probenecid, and aminooxyacetic acid (AOAA), a beta-lyase inhibitor, decreased the covalent binding from N-acetyl [35S]DCVC (80 and 50%, respectively), but only AOAA inhibited the covalent binding of DCVC. AOAA also partially inhibited the toxicity of DCVC and N-acetyl-DCVC as determined by intracellular K+ content, lactate dehydrogenase activity, and histopathology. Despite the fact that a separate transport system and an additional enzymatic step (deacetylation) are required, N-acetyl-DCVC produces a lesion with similar intratubular specificity to that seen with DCVC. Therefore, the S3 specificity seen in vivo could be produced by either compound.[1]


WikiGenes - Universities