The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity.

Exposure of cultures of cortical cells from mouse to either of the endogenous excitatory neurotoxins quinolinate or glutamate resulted in widespread neuronal destruction; but only in the cultures exposed to quinolinate, an N-methyl-D-aspartate agonist, was there a striking preservation of the subpopulation of neurons containing the enzyme nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d). Further investigation revealed that neurons containing NADPH-d were also resistant to the toxicity of N-methyl-D-aspartate itself but were selectively vulnerable to the toxicity of either kainate or quisqualate. Thus, neurons containing NADPH-d may have an unusual distribution of receptors for excitatory amino acids, with a relative lack of N-methyl-D-aspartate receptors and a relative preponderance of kainate or quisqualate receptors. Since selective sparing of neurons containing NADPH-d is a hallmark of Huntington's disease, the results support the hypothesis that the disease may be caused by excess exposure to quinolinate or some other endogenous N-methyl-D-aspartate agonist.[1]

References

 
WikiGenes - Universities