The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional effects on glomerular hemodynamics of short-term chronic cyclosporine in male rats.

We evaluated the effects of chronic cyclosporine (CsA) administration on the determinants of nephron filtration rate (SNGFR) using micropuncture techniques (mp) in male Munich-Wistar rats. Animals received CsA (30 mg/kg SQ) in olive oil daily for 8 d before mp. Controls (PFC) were pair fed. SNGFR, glomerular capillary hydrostatic pressure gradient (delta P), nephron plasma flow (SNPF), plasma protein oncotic pressure (pi A), and glomerular ultrafiltration coefficient (LpA) were quantitated in each experiment. CsA was associated with a lower SNGFR due to decreases in SNPF and a major reduction in delta P but no decrease in LpA. Plasma volume expansion (PVE) caused SNGFR, delta P, and SNPF to increase in both CsA and PFC without eliminating the differences between CsA and PFC. CsA/PVE rats responded normally to angiotensin II (AII) infusion indicating that the low delta P associated with CsA is not due to unresponsiveness to AII. Prior renal denervation caused SNGFR and SNPF to increase in CsA-treated animals but failed to alter the reduction in glomerular capillary pressure after CsA or to eliminate the glomerular hemodynamic differences between treated animals and pair-fed controls. This constellation of glomerular hemodynamic abnormalities suggests that the renal effect of short-term chronic CsA administration is mediated primarily by a reduction in the afferent effective filtration pressure resulting from an imbalance between pre- and postglomerular vascular resistances.[1]

References

  1. Functional effects on glomerular hemodynamics of short-term chronic cyclosporine in male rats. Thomson, S.C., Tucker, B.J., Gabbai, F., Blantz, R.C. J. Clin. Invest. (1989) [Pubmed]
 
WikiGenes - Universities