The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

High level of complexity of small nuclear RNAs in fungi and plants.

The complexity of the trimethylguanosine-capped, small nuclear RNA (snRNA) populations in a number of organisms has been examined using immunoprecipitation and two-dimensional gels. From the fungi Aspergillus nidulans and Schizosaccharomyces pombe, over 30 major snRNAs can be resolved. The most abundant of these correspond to the putative analogues of vertebrate U1, U2, U4 and U5, which have been reported to be precipitated by anti-Sm antibodies, but other snRNAs are little less abundant than the major Sm-precipitable species. A similarly high level of complexity of snRNAs is detected in pea plants. In Candida albicans, the snRNAs are somewhat less numerous (about 22 major species) and are substantially less abundant than those of the above fungi, features shared with another budding yeast, Saccharomyces cerevisiae. Ten species of human snRNA have been reported; on two-dimensional gels, a number of additional snRNAs can be resolved from human cells. Each fungus, as well as pea plants, contains snRNAs substantially larger than any reported from vertebrates or detected in the human RNA used here. It appears that many eukaryotes contain substantially more species of snRNA than was previously believed.[1]


WikiGenes - Universities