The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Carbodiimide inactivation of Na,K-ATPase. A consequence of internal cross-linking and not carboxyl group modification.

Irreversible inhibition of Na,K-ATPase and K+-dependent p-nitrophenylphosphatase activities was produced by incubation of purified Na,K-ATPase enzyme with 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EPC). Inhibition was time and [EPC] dependent and displayed first order kinetics with respect to time. The [EPC] to reduce the enzyme velocity by 50% for Na,K-ATPase and phosphatase activities was 1.6 and 2.2 mM, respectively. Analysis of the kinetics of inhibition by EPC indicated that reaction at one site was sufficient to produce inhibition. Inhibition was greatly reduced by the presence of Mg2+, Na+, K+, choline, or Tris (decreasing order of effectiveness); ATP was without effect. This suggests that cation-bound enzyme forms were less reactive with the carbodiimide than free enzyme; ATP-bound enzyme was as reactive. Apparently the cations Na+, Mg2+, Tris, and choline stabilize E1 forms of the enzyme which are different from the E1 form stabilized by ATP. Addition of [14C]glycine ethyl ester (Gly-OEt) resulted in incorporation of radioactivity into both alpha and beta subunits that was dependent upon the presence of EPC, and the incorporation was reduced by the cations which reduced the inhibition due to EPC. Simultaneous addition of Gly-OEt with EPC prevented inhibition, although 14C incorporation still took place. If Gly-OEt addition was delayed the initial inactivation was not affected, but little subsequent inactivation occurred. The protection against inactivation by EPC occurs on the addition of other exogenous nucleophiles, such as aminoethane or ethylenediamine. Dicyclohexylcarbodiimide, a more potent hydrophobic carbodiimide inhibitor, shows similar effects; the inhibition due to dicyclohexylcarbodiimide is also prevented by the simultaneous presence of a nucleophile. After treatment with a carbodiimide and exogenous nucleophile the Na,K-ATPase has modified carboxyl residues but is not inhibited. Thus, modification of the cation-protectable carboxyl groups does not by itself cause inhibition. It seems likely that the inhibition of activity due to carbodiimide alone is not due to the modification of a carboxyl group per se but to the formation of an intramolecular bond between the carbodiimide-activated carboxylic acid and an endogenous nucleophile. The formation of such bonds suggests the close juxtaposition of amine and carboxyl groups in the secondary structure of the enzyme.[1]

References

 
WikiGenes - Universities