The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mucidin and strobilurin A are identical and inhibit electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain at the same site as myxothiazol.

Mucidin and strobilurin A, antifungal antibiotics isolated from the basidiomycetes Oudemansiella mucida and Strobiluris tenacellus, respectively, inhibit electron-transfer reactions in the cytochrome bc1 complex of the mitochondrial respiratory chain. The two compounds have identical effects on oxidation-reduction reactions of the cytochromes b and c1 in isolated succinate-cytochrome c reductase. They inhibit reduction of cytochrome c1 by succinate but do not inhibit reduction of cytochrome b. When added in combination with antimycin, either inhibitor blocks reduction of both cytochromes b and c1. Mucidin and strobilurin A differ from antimycin in that they inhibit, rather than promote, oxidant-induced reduction of cytochrome b. They also differ from antimycin in that they do not block reduction of cytochrome b by succinate when cytochrome c1 is previously reduced by ascorbate and they do not inhibit oxidation of cytochrome b by fumarate. These effects of mucidin and strobilurin A are, however, qualitatively identical with those of myxothiazol, an antibiotic that inhibits respiration by binding to cytochrome b [Von Jagow, G., Ljungdahl, P. O., Graf, P., Ohnishi, T., & Trumpower, B. L. (1984) J. Biol. Chem. 259, 6319-6326]. Mucidin and strobilurin A have identical UV and mass spectra, and they elute together on high-pressure liquid chromatography. We thus conclude that these antibiotics, although isolated from different bacteria, are structurally identical. Our results indicate that strobilurin A and mucidin inhibit electron transport at the same site as myxothiazol and not at the antimycin site, as previously reported [Subik, J., Behren, M., & Musilek, V. (1974) Biochem. Biophys. Res. Commun. 57, 17-22].[1]


WikiGenes - Universities