The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Pre-steady-state reduction kinetics of QH2:cytochrome c oxidoreductase and the Q-pool: evidence for a special quinone not in rapid equilibrium with the Q-pool.

The pre-steady-state kinetics of the reduction of the prosthetic groups of QH2:cytochrome c oxidoreductase in bovine heart submitochondrial particles were studied in relation to the kinetics of the Q-10 reduction, using duroquinol as substrate. The prosthetic groups, including semiquinone, were measured with EPR and low-temperature-diffuse reflectance spectroscopy, the samples being prepared with the rapid-freeze quench technique. For the determination of the redox state of ubiquinone in the pre-steady state the rapid chemical quench technique was used as an extension of the rapid-freeze quench technique, and Q-10 and QH2-10 were measured with reversed-phase HPLC after extraction with petroleum ether. Ubiquinone was reduced biphasically, 8% of total Q-10 (equal to 1 mol Q-10/mol cytochrome c1), being reduced within 5 ms, and the rest, the Q-pool, at a much lower rate. The initial rapid reduction of this special Q-10 was accompanied by rapid formation of Qi and rapid reduction of a large part of the cytochrome b-562. Both semiquinone formation and reduction of b-562 showed transient kinetics due to a contribution of the reaction pathway via centre o when the iron-sulphur cluster and cytochrome c1 were oxidised. The majority of the special quinol was located at centre i, probably bound, but also at centre o some bound quinol was formed. This was visible when antimycin was present, the antimycin-insensitive bound quinol being totally sensitive to myxothiazol. Myxothiazol alone accelerated the reduction of the Q-pool via centre i, but also the equilibration of cytochrome b-562 with the Q-pool. Antimycin drastically lowered the rate of reduction of the Q-pool and additionally seemed to block the rapid electron transfer from part of the Rieske iron-sulphur cluster to cytochrome c1. It is concluded that, during the pre-steady-state, cytochrome b-562 is not in equilibrium with the Q-pool and that the rate of equilibration is probably determined by the rate of dissociation of the special bound quinol from centre i.[1]


WikiGenes - Universities