The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium.

A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). This monooxygenase has now been purified to homogeneity from pentobarbital-induced bacteria as a single polypeptide with a molecular weight of 119,000 +/- 5,000 daltons. In the presence of NADPH and O2, it can catalyze the oxygenation of long chain fatty acids without the aid of any other protein. The enzyme has a catalytic center activity of 4,600 nmol of fatty acid oxygenated per nmol of P-450 (the highest activity yet reported for a P-450-dependent monooxygenase) and also functions as a highly active cytochrome c reductase in the presence of NADPH. The purified holoenzyme is a soluble protein containing 40 mol % hydrophobic amino acid residues and 1 mol each of FAD and FMN/mol of heme. It is isolated and purified in the low spin form but is converted to the high spin form in the presence of long chain fatty acids. The enzyme, which catalyzes the omega-2 hydroxylation of saturated fatty acids and the hydroxylation and epoxidation of unsaturated fatty acids has its highest affinity (Km = 2 +/- 1 microM) for the C15 and C16 chain lengths.[1]

References

 
WikiGenes - Universities