The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bacillus megaterium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bacillus megaterium

 

High impact information on Bacillus megaterium

 

Chemical compound and disease context of Bacillus megaterium

  • The transbilayer distribution of phospholipids in Bacillus megaterium is asymmetrical, with twice as much phosphatidylethanolamine internally as externally (Rothaman, J. E. & Kennedy, E. P. (1977) J. Mol. Biol. 110,603-618) [11].
  • Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3 [12].
  • A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850) [13].
  • Cell-free extracts from sonically disrupted Bacillus megaterium ATCC 13368 hydroxylated a variety of 3-oxo-delta4-steroids in position 15beta in the presence of NADPH and O2 [14].
  • A protein factor, called PG-I, can be solubilized from toluene-treated Bacillus megaterium cells by LiCl extraction [15].
 

Biological context of Bacillus megaterium

 

Anatomical context of Bacillus megaterium

 

Gene context of Bacillus megaterium

 

Analytical, diagnostic and therapeutic context of Bacillus megaterium

References

  1. Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Nicholson, W.L., Setlow, B., Setlow, P. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  2. Complementation of mutants in the Escherichia coli proton-translocating ATPase by cloned DNA from Bacillus megaterium. Hawthorne, C.A., Brusilow, W.S. J. Biol. Chem. (1986) [Pubmed]
  3. Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Smith, L.D., Budgen, N., Bungard, S.J., Danson, M.J., Hough, D.W. Biochem. J. (1989) [Pubmed]
  4. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Tegos, G., Stermitz, F.R., Lomovskaya, O., Lewis, K. Antimicrob. Agents Chemother. (2002) [Pubmed]
  5. Cholesterol incorporation into bacterial membranes. Razin, S. J. Bacteriol. (1975) [Pubmed]
  6. Bacillus megaterium resistance to cloxacillin accompanied by a compensatory change in penicillin binding proteins. Giles, A.F., Reynolds, R.E. Nature (1979) [Pubmed]
  7. Oxidation of elemental selenium to selenite by Bacillus megaterium. Sarathchandra, S.U., Watkinson, J.H. Science (1981) [Pubmed]
  8. Energetics of rapid transmembrane movement and of compositional asymmetry of phosphatidylethanolamine in membranes of Bacillus megaterium. Langley, K.E., Kennedy, E.P. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  9. Membrane lateral phase separations and chlortetracycline transport by Bacillus megaterium. Dockter, M.E., Trumble, W.R., Magnuson, J.A. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  10. Fusion of protoplasts of Bacillus megaterium. Fodor, K., Alföldi, L. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  11. Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly. Rothman, J.E., Kennedy, E.P. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  12. Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3. Makino, Y., Negoro, S., Urabe, I., Okada, H. J. Biol. Chem. (1989) [Pubmed]
  13. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. Narhi, L.O., Fulco, A.J. J. Biol. Chem. (1986) [Pubmed]
  14. Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. Berg, A., Gustafsson, J.A., Ingelman-Sundberg, M. J. Biol. Chem. (1976) [Pubmed]
  15. Purification and properties of a protein factor stimulating peptidoglycan synthesis in toluene- and Licl-treated Bacillus megaterium cells. Taku, A., Fan, D.P. J. Biol. Chem. (1976) [Pubmed]
  16. Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation. Decker, S.J., Lang, D.R. J. Biol. Chem. (1977) [Pubmed]
  17. A barbiturate-regulated protein binding to a common sequence in the cytochrome P450 genes of rodents and bacteria. He, J.S., Fulco, A.J. J. Biol. Chem. (1991) [Pubmed]
  18. Inhibition by barbiturates of the binding of Bm3R1 repressor to its operator site on the barbiturate-inducible cytochrome P450BM-3 gene of Bacillus megaterium. Shaw, G.C., Fulco, A.J. J. Biol. Chem. (1993) [Pubmed]
  19. Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Kunnimalaiyaan, M., Stevenson, D.M., Zhou, Y., Vary, P.S. Mol. Microbiol. (2001) [Pubmed]
  20. Reconstitution of cell wall synthesis in toluene- and LiCl-treated Bacillus megaterium cells by addition of a soluble protein extract. Taku, A., Gardner, H.L., Fan, D.P. J. Biol. Chem. (1975) [Pubmed]
  21. Characterization of the major citrate synthase of Bacillus subtilis. Jin, S., Sonenshein, A.L. J. Bacteriol. (1996) [Pubmed]
  22. Bacillolysin MA, a novel bacterial metalloproteinase that produces angiostatin-like fragments from plasminogen and activates protease zymogens in the coagulation and fibrinolysis systems. Narasaki, R., Kuribayashi, H., Shimizu, K., Imamura, D., Sato, T., Hasumi, K. J. Biol. Chem. (2005) [Pubmed]
  23. Molecular modelling of lanosterol 14 alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives. Lewis, D.F., Wiseman, A., Tarbit, M.H. J. Enzym. Inhib. (1999) [Pubmed]
  24. Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium. Schmiedel, D., Kintrup, M., Küster, E., Hillen, W. Mol. Microbiol. (1997) [Pubmed]
  25. Nucleotide sequence of a Bacillus megaterium gene homologous to the dnaK gene of Escherichia coli. Sussman, M.D., Setlow, P. Nucleic Acids Res. (1987) [Pubmed]
  26. Purification and partial characterization of NADPH-cytochrome c reductase from Petunia hybrida flowers. Menting, J.G., Cornish, E., Scopes, R.K. Plant Physiol. (1994) [Pubmed]
  27. Occurrence in Bacillus megaterium of uridine 5'-diphospho-N-acetylgalactosamine and uridine 5'-diphosphogalactosamine, intermediates in the biosynthesis of galactosamine-6-phosphate polymer. Nishikawa, J., Tada, M., Takubo, Y., Nishihara, T., Kondo, M. J. Bacteriol. (1987) [Pubmed]
  28. Isolation and properties of membranes from Bacillus megaterium spores. Racine, F.M., Vary, J.C. J. Bacteriol. (1980) [Pubmed]
  29. Ralstonia solanacearum iron scavenging by the siderophore staphyloferrin B is controlled by PhcA, the global virulence regulator. Bhatt, G., Denny, T.P. J. Bacteriol. (2004) [Pubmed]
  30. Evidence for an essential histidine residue in glucose dehydrogenase from Bacillus megaterium and sequence analysis of the peptides labeled with bromoacetyl pyridine. Ulmer, W., Fröschle, M., Jany, K.D. Eur. J. Biochem. (1983) [Pubmed]
  31. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus, T., Scheler, A., Allmansberger, R., Hillen, W. Arch. Microbiol. (1991) [Pubmed]
 
WikiGenes - Universities