2,5,2',5'-Tetrachlorobiphenyl impairs the bioenergetic functions of isolated rat liver mitochondria.
The effects of 2,5,2',5'-tetrachlorobiphenyl (25TCB) on parameters related to the bioenergetic functions of isolated rat liver mitochondria were investigated. State 3 respiration was inhibited by 25TCB with both succinate and glutamate/malate as the respiratory substrates. The extent of inhibition with succinate was larger than that observed with glutamate/malate. The concentration of 25TCB required to cause 50% inhibition for succinate was 51 microM, but with glutamate/malate, only 53% inhibition was observed at 200 microM. 25TCB stimulated state 4 respiration after 1-2 min lag period; state 4 respiration in the presence of glutamate/malate was more intensely stimulated by 25TCB than in the presence of succinate. 25TCB dissipated the membrane potential across the mitochondrial membranes. Isolated rat liver mitochondria accumulate large amounts of Ca2+ at the expense of respiration-linked energy (substrate oxidation) or of that provided by the hydrolysis of ATP by the mitochondrial ATPase. The Ca2+ accumulation by mitochondria was severely depressed by 25TCB when the energy was supplied by respiration. Furthermore, the inhibition of Ca2+ accumulation by 25TCB with succinate was greater than that produced with glutamate/malate. On the other hand, with ATP as the source of energy, 25TCB inhibited Ca2+ accumulation at high concentrations. 25TCB also released Ca2+ from mitochondria that had already accumulated Ca2+, indicating that mitochondrial membrane integrity was damaged by the intercalation of 25TCB. These results show that 25TCB impairs mitochondrial energy production, and inhibits Ca2+ sequestration by mitochondria.[1]References
- 2,5,2',5'-Tetrachlorobiphenyl impairs the bioenergetic functions of isolated rat liver mitochondria. Nishihara, Y., Utsumi, K. Biochem. Pharmacol. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg