The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Physiological and structural properties of saponin-skinned single smooth muscle cells.

The study of the fundamental events underlying the generation and regulation of force in smooth muscle would be greatly facilitated if the permeability of the cell membrane were increased so that the intracellular environment of the contractile apparatus could be manipulated experimentally. To initiate such an analysis, we developed a saponin permeabilization procedure that was used to "skin" isolated smooth muscle cells from the stomach of the toad, Bufo marinus. Suspensions of single cells isolated enzymatically were resuspended in high-K+ rigor solution (0 ATP, 5 mM EGTA) and exposed for 5 min to 25 micrograms/ml saponin. Virtually all the cells in a suspension were made permeable by this procedure and shortened to less than one-third their initial length when ATP and Ca++ were added; they re-extended when free Ca++ was removed. Analysis of the protein content of the skinned cells revealed that, although their total protein was reduced by approximately 30%, they retained most of their myosin and actin. Skinning was accompanied by a rearrangement of actin and myosin filaments within the cells such that a fine fibrillar structure became visible under the light microscope and a tight clustering of acting filaments around myosin filaments was revealed by the electron microscope. Face-on views of saponin-treated cell membranes revealed the presence of 70-80-A-wide pits or holes. The shortening rate of skinned cells was sensitive to [Ca++] between pCa 7 and pCa 5 and was half-maximal at approximately pCa 6. 2. Shortening was also dependent on [ATP] but could be increased at low [ATP] by pretreatment with adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S), which suggests that myosin phosphorylation was more sensitive to low substrate concentrations than was cross-bridge cycling. To determine whether a significant limitation to free diffusion existed in the skinned cells, a computer model of the cell and the unstirred layer surrounding it was developed. Simulations revealed that the membrane, even in skinned cells, could, for short time intervals, significantly inhibit the movement of substances into and out of cells.[1]

References

 
WikiGenes - Universities