The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Evidence for multiple mechanisms responsible for 2,5-hexanedione-induced neuropathy.

The present studies were carried out to investigate the comparative roles of protein cross-linking and alteration in protein phosphorylation in the accumulation of neurofilaments due to aliphatic hexacarbons. In these studies, rats were given 2,5-hexanedione (0, 0.1, 0.25 and 1.0%) for 70 days in their drinking water. In a separate study of in vitro protein phosphorylation rats were given 1% 2,5-hexanedione for 14 days in their drinking water. Spinal cord neurofilaments were isolated and analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting using anti-neurofilament antibodies, radioimmunoassays (RIAs) of phosphorylated epitopes on neurofilament proteins and protein phosphorylation. Protein cross-linking of neurofilaments was found in all animals treated with 2,5-hexanedione including the lowest dose (0.1%) which did not produce clinical signs of intoxication. Protein phosphorylation of neurofilament proteins, as well as MAP-2 was significantly decreased upon treatment. Protein staining revealed a decreased amount of neurofilament protein and immunoblotting demonstrated neurofilament protein cross-linking in these animals. Protein staining of glial fibrillary acidic protein (GFAP) was unaltered by this treatment. RIAs of phosphorylated and non-phosphorylated epitopes of neurofilament proteins indicated that in vivo phosphorylation of these proteins was also decreased. Two-dimensional gel electrophoresis indicated a shift of the neurofilament proteins to a basic pI, indicating a dephosphorylation of neurofilament proteins. Cross-linked neurofilament proteins also exhibited a pI which was more basic than any of the individual neurofilament proteins. This report demonstrates differential effects of 2,5-hexanedione on neurofilament proteins and indicates that several mechanisms may be responsible for their accumulation.[1]


  1. Evidence for multiple mechanisms responsible for 2,5-hexanedione-induced neuropathy. Lapadula, D.M., Suwita, E., Abou-Donia, M.B. Brain Res. (1988) [Pubmed]
WikiGenes - Universities