The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Map2  -  microtubule-associated protein 2

Rattus norvegicus

Synonyms: MAP-2, MAP2R, Microtubule-associated protein 2, Mtap2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mtap2


Psychiatry related information on Mtap2

  • The implications of these findings to the loss of synaptophysin and MAP-2 staining in Alzheimer's disease are discussed [6].
  • When the rats were dehydrated with water deprivation or drinking of 2% saline solution, the process of MAP2-stained pituicytes was less branched due to retracting their cellular processes as compared with those of well-hydrated control and rehydrated rats [7].

High impact information on Mtap2

  • Among MAPs, MAP2 is specifically expressed in dendrites whereas MAP2C and tau are abundant in the axon [8].
  • Both MAP2 and tau induce microtubule bundle formation in fibroblasts after transfection of complementary DNAs, and a long process resembling an axon is extended in Sf9 cells infected with recombinant baculovirus expressing tau [8].
  • The most prominent microtubule-associated protein of the neuronal cytoskeleton is MAP2 [9].
  • Here we report that the high- and low-molecular weight forms of MAP2 are generated by alternative splicing and share the entire C-terminal tubulin-binding domain as well as a short N-terminal sequence [9].
  • We show here that antisense MAP2 oligonucleotides inhibit neurite outgrowth in cultured cerebellar macroneurons [10].

Chemical compound and disease context of Mtap2

  • These areas receded, leaving central glucose hypoutilizing areas with complete loss of MAP 2 immunostaining and histologic infarction, surrounded by only a rim of tissue with increased CMRglc [11].
  • L-Carnitine, which protects rats against ammonia toxicity, also prevented MAP-2 degradation [12].
  • The aim of this work was to analyze the effects of hyperammonemia on modulation of MAP-2 phosphorylation by metabotropic glutamate receptors (mGluRs) in rat cerebellar neurons in culture [13].
  • The depletion of MAP1 and MAP2 immunoreactivity by acrylamide appears to be an early biochemical event preceding peripheral neuropathy [14].
  • Anoxia (measured PO2 = 0 Torr) induced a marked loss in dendritic MAP2 immunoreactivity and cell swelling of hippocampal neurons by 2 h after O2 reinstitution [15].

Biological context of Mtap2


Anatomical context of Mtap2


Associations of Mtap2 with chemical compounds


Physical interactions of Mtap2

  • Furthermore, Arc interacted with newly polymerized microtubules and MAP2, leading to blocking of the epitope of MAP2 [25].
  • This study determined that MAP2 resides in a complex with the NMDA receptor, suggesting that spatially localized changes may be important in the mechanism of MAP2 redistribution and breakdown after oxygen-glucose deprivation (OGD) [2].

Enzymatic interactions of Mtap2


Co-localisations of Mtap2


Regulatory relationships of Mtap2


Other interactions of Mtap2

  • There was no particular MT which bound either MAP1A or MAP2 alone [19].
  • RESULTS: Loss of immunoreactivity of both MAP-2 and GAP-43 was observed in most damaged neurons in the ischemic core [1].
  • However, at 39 degrees C, the cells produced dendritic, neuronal-like processes and elevated levels of NF68 and MAP2, as well as the neuronal markers synaptophysin, neurone-specific enolase, and low levels of tau, all determined by western blotting and immunofluorescent staining [31].
  • After BDNF treatment, RN46A cells were serotonin-immunopositive and bipolar, and expressed the microtubule-associated-protein 2 (Map2) [24].
  • In contrast, MAP-2, GAP-43, and cyclin D1 were selectively increased in morphologically intact or altered neurons localized to the ischemic core at an early stage (eg, 6 hours) of reperfusion and in the boundary zone to the ischemic core (penumbra) during longer reperfusion times [1].

Analytical, diagnostic and therapeutic context of Mtap2


  1. Neuronal damage and plasticity identified by microtubule-associated protein 2, growth-associated protein 43, and cyclin D1 immunoreactivity after focal cerebral ischemia in rats. Li, Y., Jiang, N., Powers, C., Chopp, M. Stroke (1998) [Pubmed]
  2. Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Buddle, M., Eberhardt, E., Ciminello, L.H., Levin, T., Wing, R., DiPasquale, K., Raley-Susman, K.M. Brain Res. (2003) [Pubmed]
  3. Dendritic and synaptic pathology in experimental autoimmune encephalomyelitis. Zhu, B., Luo, L., Moore, G.R., Paty, D.W., Cynader, M.S. Am. J. Pathol. (2003) [Pubmed]
  4. Proteolysis of microtubule associated protein 2 and sensitivity of pancreatic tumours to docetaxel. Veitia, R., David, S., Barbier, P., Vantard, M., Gounon, P., Bissery, M.C., Fellous, A. Br. J. Cancer (2000) [Pubmed]
  5. Selective vulnerability of hippocampal CA3 neurons to hypoxia after mild concussion in the rat. Nawashiro, H., Shima, K., Chigasaki, H. Neurol. Res. (1995) [Pubmed]
  6. 5-HT1A agonist and dexamethasone reversal of para-chloroamphetamine induced loss of MAP-2 and synaptophysin immunoreactivity in adult rat brain. Azmitia, E.C., Rubinstein, V.J., Strafaci, J.A., Rios, J.C., Whitaker-Azmitia, P.M. Brain Res. (1995) [Pubmed]
  7. Redistribution of MAP2 immunoreactivity in the neurohypophysial astrocytes of adult rats during dehydration. Matsunaga, W., Miyata, S., Kiyohara, T. Brain Res. (1999) [Pubmed]
  8. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Chen, J., Kanai, Y., Cowan, N.J., Hirokawa, N. Nature (1992) [Pubmed]
  9. Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2. Papandrikopoulou, A., Doll, T., Tucker, R.P., Garner, C.C., Matus, A. Nature (1989) [Pubmed]
  10. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Caceres, A., Mautino, J., Kosik, K.S. Neuron (1992) [Pubmed]
  11. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. Gilland, E., Bona, E., Hagberg, H. J. Cereb. Blood Flow Metab. (1998) [Pubmed]
  12. Ammonium injection induces an N-methyl-D-aspartate receptor-mediated proteolysis of the microtubule-associated protein MAP-2. Felipo, V., Grau, E., Miñana, M.D., Grisolía, S. J. Neurochem. (1993) [Pubmed]
  13. Chronic exposure to ammonia alters the modulation of phosphorylation of microtubule-associated protein 2 by metabotropic glutamate receptors 1 and 5 in cerebellar neurons in culture. Llansola, M., Erceg, S., Felipo, V. Neuroscience (2005) [Pubmed]
  14. Acrylamide-induced depletion of microtubule-associated proteins (MAP1 and MAP2) in the rat extrapyramidal system. Chauhan, N.B., Spencer, P.S., Sabri, M.I. Brain Res. (1993) [Pubmed]
  15. Acute anoxia-induced alterations in MAP2 immunoreactivity and neuronal morphology in rat hippocampus. Kwei, S., Jiang, C., Haddad, G.G. Brain Res. (1993) [Pubmed]
  16. Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons. Hirai, T., Taniura, H., Goto, Y., Tamaki, K., Oikawa, H., Kambe, Y., Ogura, M., Ohno, Y., Takarada, T., Yoneda, Y. J. Neurosci. Res. (2005) [Pubmed]
  17. The phosphorylation state of threonine-220, a uniquely phosphatase-sensitive protein kinase A site in microtubule-associated protein MAP2c, regulates microtubule binding and stability. Alexa, A., Schmidt, G., Tompa, P., Ogueta, S., Vázquez, J., Kulcsár, P., Kovács, J., Dombrádi, V., Friedrich, P. Biochemistry (2002) [Pubmed]
  18. Changes in the content and distribution of microtubule associated protein 2 in the hippocampus of the rat during the estrous cycle. Reyna-Neyra, A., Arias, C., Ferrera, P., Morimoto, S., Camacho-Arroyo, I. J. Neurobiol. (2004) [Pubmed]
  19. Colocalization of microtubule-associated protein 1A and microtubule-associated protein 2 on neuronal microtubules in situ revealed with double-label immunoelectron microscopy. Shiomura, Y., Hirokawa, N. J. Cell Biol. (1987) [Pubmed]
  20. Cognition- and anxiety-related behavior, synaptophysin and MAP2 immunoreactivity in the adult rat treated with a single course of antenatal betamethasone. Bruschettini, M., van den Hove, D.L., Timmers, S., Welling, M., Steinbusch, H.P., Prickaerts, J., Gazzolo, D., Blanco, C.E., Steinbusch, H.W. Pediatr. Res. (2006) [Pubmed]
  21. Compartmental organization of the olfactory bulb glomerulus. Kasowski, H.J., Kim, H., Greer, C.A. J. Comp. Neurol. (1999) [Pubmed]
  22. Are neuronal markers and neocortical graft-host interface influenced by housing conditions in rats with cortical infarct cavity? Zeng, J., Zhao, L.R., Nordborg, C., Mattsson, B., Johansson, B.B. Brain Res. Bull. (1999) [Pubmed]
  23. Effects of neuronal proteoglycans on activity-dependent growth responses of fetal hippocampal neurons. Wang, W., Dow, K.E. Brain Res. Mol. Brain Res. (1997) [Pubmed]
  24. Somato-dendritic distribution of 5-HT(1A) and 5-HT(1B) autoreceptors in the BDNF- and cAMP-differentiated RN46A serotoninergic raphe cell line. Rumajogee, P., Vergé, D., Hamon, M., Miquel, M.C. Brain Res. (2006) [Pubmed]
  25. Arc interacts with microtubules/microtubule-associated protein 2 and attenuates microtubule-associated protein 2 immunoreactivity in the dendrites. Fujimoto, T., Tanaka, H., Kumamaru, E., Okamura, K., Miki, N. J. Neurosci. Res. (2004) [Pubmed]
  26. Acetylcholine receptor aggregation at nerve-muscle contacts in mammalian cultures: induction by ventral spinal cord neurons is specific to axons. Dutton, E.K., Uhm, C.S., Samuelsson, S.J., Schaffner, A.E., Fitzgerald, S.C., Daniels, M.P. J. Neurosci. (1995) [Pubmed]
  27. Calcium-stimulated phosphorylation of MAP-2 in pancreatic betaTC3-cells is mediated by Ca2+/calmodulin-dependent kinase II. Krueger, K.A., Bhatt, H., Landt, M., Easom, R.A. J. Biol. Chem. (1997) [Pubmed]
  28. Identification of endogenous calmodulin-dependent kinase and calmodulin-binding proteins in cold-stable microtubule preparations from rat brain. Larson, R.E., Goldenring, J.R., Vallano, M.L., DeLorenzo, R.J. J. Neurochem. (1985) [Pubmed]
  29. Central neuronal synapse formation on micropatterned surfaces. Ma, W., Liu, Q.Y., Jung, D., Manos, P., Pancrazio, J.J., Schaffner, A.E., Barker, J.L., Stenger, D.A. Brain Res. Dev. Brain Res. (1998) [Pubmed]
  30. Dietary aluminum selectively decreases MAP-2 in brains of developing and adult rats. Johnson, G.V., Watson, A.L., Lartius, R., Uemura, E., Jope, R.S. Neurotoxicology (1992) [Pubmed]
  31. Isolation of a potential neural stem cell line from the internal capsule of an adult transgenic rat brain. Kilty, I.C., Barraclough, R., Schmidt, G., Rudland, P.S. J. Neurochem. (1999) [Pubmed]
  32. Complete sequence of rat MAP2d, a novel MAP2 isoform. Ferhat, L., Ben-Ari, Y., Khrestchatisky, M. C. R. Acad. Sci. III, Sci. Vie (1994) [Pubmed]
  33. Distinct spatial localization of specific mRNAs in cultured sympathetic neurons. Bruckenstein, D.A., Lein, P.J., Higgins, D., Fremeau, R.T. Neuron (1990) [Pubmed]
  34. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system. Hirokawa, N., Bloom, G.S., Vallee, R.B. J. Cell Biol. (1985) [Pubmed]
  35. Neuritic differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. de Lima, A.D., Merten, M.D., Voigt, T. J. Comp. Neurol. (1997) [Pubmed]
WikiGenes - Universities