Genetic analysis of mouse t haplotypes using mutations induced by ethylnitrosourea mutagenesis: the order of T and qk is inverted in t mutants.
The t region of mouse chromosome 17 exhibits recombination suppression with wild-type chromatin. However, the region has resisted classical genetic dissection because of a lack of defined variants. Mutations induced by N-ethyl-N-nitrosourea (ENU) at the Brachyury (T), quaking (qk), and tufted (tf) loci of the mouse tw5 haplotype have now allowed the analysis of crossovers between two complete t haplotypes. A classical breeding analysis of the complete t haplotypes, tw5 and t12, utilizing the newly induced markers, reveals two inversions in t chromatin: one involving T and qk, and one involving tf and the H-2 complex. Moreover, the recombination frequency between the loci of T and qk is reduced compared to the frequency reported in normal chromatin. These two inversions are a sufficient explanation for the recombination inhibition with normal chromatin exhibited by t haplotypes isolated from the wild. Furthermore, the reduced recombination frequency between T and qk may indicate that the proximal gene rearrangement is not a simple inversion.[1]References
- Genetic analysis of mouse t haplotypes using mutations induced by ethylnitrosourea mutagenesis: the order of T and qk is inverted in t mutants. Justice, M.J., Bode, V.C. Genetics (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg