The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors.

Rabbit chondrocyte cultures on plastic dishes are capable of depositing a cartilaginous matrix, although the matrix does not calcify unless high levels of phosphate are added to the medium. In the present study, we cultivated a pelleted mass of rabbit growth-plate chondrocytes in the presence of Eagle's minimum essential medium supplemented with 10% fetal bovine serum and 50 micrograms of ascorbic acid per ml in a plastic centrifuge tube. These cells proliferated for several generations and then reorganized into a cartilage-like tissue that calcified without additional phosphate. The deposition of minerals was observed only after synthesis of a short-chain collagen and alkaline phosphatase. Serum factors were required for the increases in alkaline phosphatase and calcium contents. 5-Bromo-2'-deoxyuridine abolished the increases in uronic acid, alkaline phosphatase, and calcium contents. Transforming growth factor beta, at very low concentrations, suppressed the expression of the mineralization-related phenotype by chondrocytes. These results suggest that cartilage-matrix calcification can be controlled by growth factor(s) and that chondrocytes induce the mineralization of extracellular matrix when terminal differentiation is permitted in the absence of an artificial substrate.[1]

References

 
WikiGenes - Universities