The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metabolism and anti-human immunodeficiency virus-1 activity of 2-halo-2',3'-dideoxyadenosine derivatives.

Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 microM), the 2-halo-2',3-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.[1]

References

  1. Metabolism and anti-human immunodeficiency virus-1 activity of 2-halo-2',3'-dideoxyadenosine derivatives. Haertle, T., Carrera, C.J., Wasson, D.B., Sowers, L.C., Richman, D.D., Carson, D.A. J. Biol. Chem. (1988) [Pubmed]
 
WikiGenes - Universities