Kinetic and segregational analysis of mitochondrial DNA recombination in yeast.
A pair of yeast strains of opposite mating type was constructed to contain polymorphisms at three loci on the mitochondrial genome--the 21 S rRNA gene, var1, and cob--such that parental and recombinant forms of these genes could be easily detected by Southern blot analysis. These polymorphisms were used to measure in a single cross gene conversions at the 21 S rRNA and var1 loci and a reciprocal recombination at cob. For all three loci, recombination initiates at about the same time, 4 to 6 h after mixing cells, and increases with similar kinetics over a 24-h period. The segregation of parental and recombinant forms of these genes was then followed by pedigree analysis. The results, which show a high variance in the distribution of parental and recombinant forms of all three genes in cells derived from both the first bud and the mother zygote, are consistent with the segregation of a small number of mitochondrial DNA molecules from the zygote to diploid buds. Based on these results and previous experiments of this type, a limited "zone of mixing" of parental mitochondrial DNA molecules probably exists in the zygote. The extent of sampling from this zone, together with the intrinsic properties of the recombination events themselves, is likely to determine the observed pattern of recombination of mitochondrial DNA sequences at the population level.[1]References
- Kinetic and segregational analysis of mitochondrial DNA recombination in yeast. Zinn, A.R., Pohlman, J.K., Perlman, P.S., Butow, R.A. Plasmid (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg