The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Gene Conversion

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gene Conversion

 

High impact information on Gene Conversion

  • We found recurring mutations resulting from gene conversion in 89% of unrelated individuals with SDS (141 of 158), with 60% (95 of 158) carrying two converted alleles [6].
  • Here we show that this hot spot is an initiation site of meiotic recombination on the basis of two observations: (i) crossover density is maximal in an interval of 210 bp and decreases on both sides of this region; (ii) a high frequency of gene conversion is found in the region of highest crossover density [7].
  • Particularly exciting has been the discovery of a putative RNA editing enzyme, the activation-induced cytidine deaminase (AID), that is required for all immunoglobulin gene-specific modification reactions (somatic hypermutation, class switch recombination, and gene conversion) [8].
  • Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta [9].
  • With a single exception, the genetic mechanisms (gene conversion and point mutation) that have diversified the exon-2 sequences do not appear to extend into the adjacent intron sequences [10].
 

Chemical compound and disease context of Gene Conversion

 

Biological context of Gene Conversion

 

Anatomical context of Gene Conversion

 

Associations of Gene Conversion with chemical compounds

  • Class-switch recombination (CSR), somatic hypermutation (SHM), and antibody gene conversion are distinct DNA modification reactions, but all are initiated by activation-induced cytidine deaminase (AID), an enzyme that deaminates cytidine residues in single-stranded DNA [26].
  • Null alleles of human complement C4. Evidence for pseudogenes at the C4A locus and for gene conversion at the C4B locus [27].
  • Gene conversion is the probable mechanism by which a C4A gene is found at the second C4 locus normally occupied by C4B genes [27].
  • This coincidence led to the proposal that the 6G6 VH gene was derived by gene conversion involving three genes of the PC VH gene family [28].
  • Patterns of sequence similarities or identities indicate recombination or gene conversion events; sets of direct and inverted repeats flank the sites of, or lie within FR or CDR sequences where these genetic events may occur [29].
 

Gene context of Gene Conversion

 

Analytical, diagnostic and therapeutic context of Gene Conversion

References

  1. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Glickman, B.W., Radman, M. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  2. Homozygous gene conversion in von Willebrand factor gene as a cause of type 3 von Willebrand disease and predisposition to inhibitor development. Surdhar, G.K., Enayat, M.S., Lawson, S., Williams, M.D., Hill, F.G. Blood (2001) [Pubmed]
  3. Sequence variability of a human pseudogene. Martínez-Arias, R., Calafell, F., Mateu, E., Comas, D., Andrés, A., Bertranpetit, J. Genome Res. (2001) [Pubmed]
  4. Properties of Acinetobacter calcoaceticus recA and its contribution to intracellular gene conversion. Gregg-Jolly, L.A., Ornston, L.N. Mol. Microbiol. (1994) [Pubmed]
  5. Evidence against reciprocal recombination as the basis for tuf gene conversion in Salmonella enterica serovar Typhimurium. Arwidsson, O., Hughes, D. J. Mol. Biol. (2004) [Pubmed]
  6. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Boocock, G.R., Morrison, J.A., Popovic, M., Richards, N., Ellis, L., Durie, P.R., Rommens, J.M. Nat. Genet. (2003) [Pubmed]
  7. An initiation site for meiotic crossing-over and gene conversion in the mouse. Guillon, H., de Massy, B. Nat. Genet. (2002) [Pubmed]
  8. Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Papavasiliou, F.N., Schatz, D.G. Cell (2002) [Pubmed]
  9. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Holmes, A.M., Haber, J.E. Cell (1999) [Pubmed]
  10. Recent origin of HLA-DRB1 alleles and implications for human evolution. Bergström, T.F., Josefsson, A., Erlich, H.A., Gyllensten, U. Nat. Genet. (1998) [Pubmed]
  11. Genetic study of patients with dexamethasone-suppressible aldosteronism without the chimeric CYP11B1/CYP11B2 gene. Fardella, C.E., Pinto, M., Mosso, L., Gómez-Sánchez, C., Jalil, J., Montero, J. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  12. A plasmid system to monitor gene conversion and reciprocal recombination in vitro. Oppliger, T., Würgler, F.E., Sengstag, C. Mutat. Res. (1993) [Pubmed]
  13. The activity of 4CMB, 4HMB and BC in Saccharomyces cerevisiae JD1. Wilcox, P., Parry, J.M. Mutat. Res. (1982) [Pubmed]
  14. Genotoxicity of 'shamma', a chewing material suspected of causing oral cancer in Saudi Arabia. Hannan, M.A., el-Yazigi, A., Paul, M., Gibson, D.P., Phillips, R.L. Mutat. Res. (1986) [Pubmed]
  15. Genotoxicity of selenite in diploid yeast. Anjaria, K.B., Madhvanath, U. Mutat. Res. (1988) [Pubmed]
  16. Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Whitby, M.C., Ryder, L., Lloyd, R.G. Cell (1993) [Pubmed]
  17. Mechanisms of divergence and convergence of the human immunoglobulin alpha 1 and alpha 2 constant region gene sequences. Flanagan, J.G., Lefranc, M.P., Rabbitts, T.H. Cell (1984) [Pubmed]
  18. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Wu, X., Haber, J.E. Cell (1996) [Pubmed]
  19. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Wenzlau, J.M., Saldanha, R.J., Butow, R.A., Perlman, P.S. Cell (1989) [Pubmed]
  20. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Jacquier, A., Dujon, B. Cell (1985) [Pubmed]
  21. Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Carlson, L.M., Oettinger, M.A., Schatz, D.G., Masteller, E.L., Hurley, E.A., McCormack, W.T., Baltimore, D., Thompson, C.B. Cell (1991) [Pubmed]
  22. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis. Cousineau, I., Abaji, C., Belmaaza, A. Cancer Res. (2005) [Pubmed]
  23. Antigen-induced somatic diversification of rabbit IgH genes: gene conversion and point mutation. Winstead, C.R., Zhai, S.K., Sethupathi, P., Knight, K.L. J. Immunol. (1999) [Pubmed]
  24. Gene conversion can create new MHC alleles. Högstrand, K., Böhme, J. Immunol. Rev. (1999) [Pubmed]
  25. Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Bertrand, P., Lambert, S., Joubert, C., Lopez, B.S. Oncogene (2003) [Pubmed]
  26. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Barreto, V., Reina-San-Martin, B., Ramiro, A.R., McBride, K.M., Nussenzweig, M.C. Mol. Cell (2003) [Pubmed]
  27. Null alleles of human complement C4. Evidence for pseudogenes at the C4A locus and for gene conversion at the C4B locus. Braun, L., Schneider, P.M., Giles, C.M., Bertrams, J., Rittner, C. J. Exp. Med. (1990) [Pubmed]
  28. Evidence for gene conversion among immunoglobulin heavy chain variable region genes. Clarke, S.H., Rudikoff, S. J. Exp. Med. (1984) [Pubmed]
  29. Genetic basis of the antibody repertoire in Xenopus: analysis of the Vh diversity. Schwager, J., Bürckert, N., Courtet, M., Du Pasquier, L. EMBO J. (1989) [Pubmed]
  30. Double-strand breaks can initiate meiotic recombination in S. cerevisiae. Kolodkin, A.L., Klar, A.J., Stahl, F.W. Cell (1986) [Pubmed]
  31. Evolution of the 87A and 87C heat-shock loci in Drosophila. Leigh Brown, A.J., Ish-Horowicz, D. Nature (1981) [Pubmed]
  32. The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions. Yabuki, M., Fujii, M.M., Maizels, N. Nat. Immunol. (2005) [Pubmed]
  33. A mutation in CYP11B1 (Arg-448----His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. White, P.C., Dupont, J., New, M.I., Leiberman, E., Hochberg, Z., Rösler, A. J. Clin. Invest. (1991) [Pubmed]
  34. Changes in chromatin structure at recombination initiation sites during yeast meiosis. Ohta, K., Shibata, T., Nicolas, A. EMBO J. (1994) [Pubmed]
  35. New HLA-DPB1 alleles generated by interallelic gene conversion detected by analysis of sperm. Zangenberg, G., Huang, M.M., Arnheim, N., Erlich, H. Nat. Genet. (1995) [Pubmed]
  36. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Speiser, P.W., Dupont, J., Zhu, D., Serrat, J., Buegeleisen, M., Tusie-Luna, M.T., Lesser, M., New, M.I., White, P.C. J. Clin. Invest. (1992) [Pubmed]
  37. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. Abraham, J., Lemmers, B., Hande, M.P., Moynahan, M.E., Chahwan, C., Ciccia, A., Essers, J., Hanada, K., Chahwan, R., Khaw, A.K., McPherson, P., Shehabeldin, A., Laister, R., Arrowsmith, C., Kanaar, R., West, S.C., Jasin, M., Hakem, R. EMBO J. (2003) [Pubmed]
  38. Prenatal diagnosis of the fragile X syndrome: loss of mutation owing to a double recombinant or gene conversion event at the FMR1 locus. Losekoot, M., Hoogendoorn, E., Olmer, R., Jansen, C.C., Oosterwijk, J.C., van den Ouweland, A.M., Halley, D.J., Warren, S.T., Willemsen, R., Oostra, B.A., Bakker, E. J. Med. Genet. (1997) [Pubmed]
  39. Inducibility of gene conversion in Saccharomyces cerevisiae treated with MMS. Cundari, E., Vellosi, R., Galli, A., Bronzetti, G. Mutat. Res. (1986) [Pubmed]
 
WikiGenes - Universities