The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Post-separation detection of nucleic acids and proteins by neutron activation.

We describe approaches to neutron activation analysis and their application to post-separation autoradiographic detection of biological compounds. Specifically, we have extended the use of a "direct-labeling" method to the post-separation detection of DNA after gel electrophoresis and to the detection of nucleotides separated by TLC. In addition, we describe a more generally applicable "indirect-labeling" method in which separated compounds of interest are selectively bound to ligands containing highly neutron-activatable elements, such as manganese (55Mn), europium (151Eu), or dysprosium (164Dy), and then irradiated with thermal neutrons. This method is illustrated with nucleotides separated by TLC and with proteins separated by polyacrylamide gel electrophoresis. In contrast to the direct-labeling approach, the indirect-labeling method can be adapted to detect any class of substances for which a highly neutron-activatable, selectively binding ligand is available. The theoretically achievable sensitivity of the indirect-labeling method is in the attomole (10(-18) mol) range.[1]

References

  1. Post-separation detection of nucleic acids and proteins by neutron activation. Snapka, R.M., Kwok, K., Bernard, J.A., Harling, O.K., Varshavsky, A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
 
WikiGenes - Universities