The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina.

Regional myocardial perfusion and exogenous glucose uptake were assessed with rubidium-82 (82Rb) and 18F-2-fluoro-2-deoxyglucose (FDG) in 10 normal volunteers and 12 patients with coronary artery disease and stable angina pectoris by means of positron emission tomography. In patients at rest, the myocardial uptake of 82Rb and FDG did not differ significantly from that measured in normal subjects. The exercise test performed within the positron camera in eight patients produced typical chest pain and ischemic electrocardiographic changes in all. In each of the eight patients a region of reduced cation uptake was demonstrated in the 82Rb scan recorded at peak exercise, after which uptake of 82Rb returned to the control value 5 to 14 min after the end of the exercise. In these patients, FDG was injected in the recovery phase when all the variables that were altered during exercise, including regional myocardial 82Rb uptake, had returned to control values. In all but one patient, FDG accumulation in the regions of reduced 82Rb uptake during exercise was significantly higher than that in the nonischemic regions, i.e., the ones with a normal increment of 82Rb uptake on exercise. In the nonischemic areas, FDG uptake was not significantly different from that found in normal subjects after exercise. In conclusion, myocardial glucose transport and phosphorylation seem to be enhanced in the postischemic myocardium of patients with exercise-induced ischemia.[1]


  1. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Camici, P., Araujo, L.I., Spinks, T., Lammertsma, A.A., Kaski, J.C., Shea, M.J., Selwyn, A.P., Jones, T., Maseri, A. Circulation (1986) [Pubmed]
WikiGenes - Universities