The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Rubidium-82     rubidium

Synonyms: AC1NUZ3B, 82Rb, 14391-63-0, UNII-9K730EL8KU, Rubidium, isotope of mass 82
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of rubidium


Psychiatry related information on rubidium


High impact information on rubidium


Chemical compound and disease context of rubidium


Biological context of rubidium

  • Characterization of a new clone of ouabain-resistant CV1 cells (called OR8 cells) revealed a 5-fold increase in the IC50 for ouabain inhibition of rubidium uptake and a 10-fold increase in cell survival on ouabain [21].
  • Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82 [22].
  • In this work we measure the time evolution of the population resulting from energy-transfer collisions as a function of the energy difference between the entrance and exit collisional channels using a sample of cold Rydberg atoms produced in a rubidium magneto-optical trap [23].
  • Infarct size and viability imaged by PET using generator-produced rubidium-82 were quantified objectively by automated software and related to coronary arteriography, left ventricular ejection fraction, revascularization and 3-year mortality [24].
  • Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet [25].

Anatomical context of rubidium

  • Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability [26].
  • They also were shown to increase sodium influx and to decrease rubidium influx in monocyte preparations obtained from human blood [27].
  • Liver cell recruitment (the equivalent of capillary recruitment in other organs) was explored by carrying out multiple indicator dilution experiments with labeled rubidium across the liver of the anesthetized dog under basal conditions and after bleeding with saline replacement infusion, which increases liver blood flow [28].
  • Upon displacement of occluded rubidium, trypsin digests the Ca(2+)-bound and thermally inactivated 19-kDa membranes, and all of the membrane-embedded fragments are truncated or are split in these conditions [29].
  • For both fibroblasts and adipocytes, the dependence of rubidium uptake activity on sodium concentration was characterized by K0.5 values of 9.4 and 6.2 mM, respectively, which is also diagnostic for the alpha 1 subunit in vivo [30].

Associations of rubidium with other chemical compounds

  • Two functions of this enzyme were studied in adult, 1- and 6-week-old dogs and guinea pigs: in vitro myocardial uptake of rubidium (86Rb) and binding of ouabain [31].
  • We have carried out a quantitative study of capsaicin-induced fluxes of sodium, guanidine, calcium, rubidium, and chloride ions in cultures of neonatal and adult rat DRG neurons, in conjunction with the use of a histochemical stain that identifies capsaicin-sensitive neurons by means of cobalt uptake [32].
  • Up to 60 tissue samples were dissected from 13 human brains in defined regions and were analysed by means of neutron activation analysis for trace element concentration of cobalt, iron, rubidium, selesium, zinc, chromium, silver, cesium, antimony and scandium [33].
  • As demonstrated by the patch clamp technique and rubidium (Rb+) efflux studies, neither mutation alters the properties of channel activities [34].
  • Calcium ions have been shown to compete with two rubidium ions for occlusion sites on 19-kDa membranes, with a high affinity (KD approximately 2.8 microM, pH 7.5, 20 degrees C) [29].

Gene context of rubidium

  • Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels [35].
  • This can be explained by the observation that trk1 trk2 ppz1 or trk1 trk2 ppz1 ppz2 strains display a very poor rubidium uptake, with markedly increased Km values [36].
  • Macroscopic inward tail currents of heteromeric KCNQ1/KCNE1 channels in rubidium are reduced by about twofold and show a pronounced sigmoidal time course that develops with a delay similar to the inactivation process of homomeric KCNQ1, and is indicative of the presence of several open states [37].
  • We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate) [38].
  • Treating cells with elevated extracellular potassium caused membrane depolarization and stimulation of rubidium efflux through KCNQ2 [39].

Analytical, diagnostic and therapeutic context of rubidium


  1. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. Goldstein, R.A. J. Clin. Invest. (1985) [Pubmed]
  2. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Camici, P., Araujo, L.I., Spinks, T., Lammertsma, A.A., Kaski, J.C., Shea, M.J., Selwyn, A.P., Jones, T., Maseri, A. Circulation (1986) [Pubmed]
  3. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Stocker, J.W., De Franceschi, L., McNaughton-Smith, G.A., Corrocher, R., Beuzard, Y., Brugnara, C. Blood (2003) [Pubmed]
  4. Positron emission tomographic measurement of blood-to-brain and blood-to-tumor transport of 82Rb: the effect of dexamethasone and whole-brain radiation therapy. Jarden, J.O., Dhawan, V., Poltorak, A., Posner, J.B., Rottenberg, D.A. Ann. Neurol. (1985) [Pubmed]
  5. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. Altendorf, K., Hirata, H., Harold, F.M. J. Biol. Chem. (1975) [Pubmed]
  6. Electrolyte metabolism in patients with periodic affective disorders during treatment with rubidium. Jenner, F.A., Lee, C.R., Paschalis, C., Hill, S.E., Burkinshaw, L., Jennings, G. Psychopharmacology (Berl.) (1983) [Pubmed]
  7. Effects of rubidium on behavioral responses to methamphetamine and tetrabenazine. Furukawa, T., Tokuda, M. Jpn. J. Pharmacol. (1976) [Pubmed]
  8. Trace elements in brains of patients with alcohol abuse, endogeneous psychosis and schizophrenia. Demmel, U., Höck, A., Feinendegen, L.E., Sebek, P. Sci. Total Environ. (1984) [Pubmed]
  9. Alcohol consumption in rats treated with lithium carbonate or rubidium chloride. Alexander, G.J., Alexander, R.B. Pharmacol. Biochem. Behav. (1978) [Pubmed]
  10. Effect of exercise training on myocardial blood flow in patients with stable coronary artery disease. Yoshinaga, K., Beanlands, R.S., Dekemp, R.A., Lortie, M., Morin, J., Aung, M., McKelvie, R., Davies, R.F. Am. Heart J. (2006) [Pubmed]
  11. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Tare, M., Parkington, H.C., Coleman, H.A., Neild, T.O., Dusting, G.J. Nature (1990) [Pubmed]
  12. Cerebral vessels have the capacity to transport sodium and potassium. Eisenberg, H.M., Suddith, R.L. Science (1979) [Pubmed]
  13. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. Schwaiger, M., Hutchins, G.D., Kalff, V., Rosenspire, K., Haka, M.S., Mallette, S., Deeb, G.M., Abrams, G.D., Wieland, D. J. Clin. Invest. (1991) [Pubmed]
  14. Short-term regulation of Na+/K+ adenosine triphosphatase by recombinant human serotonin 5-HT1A receptor expressed in HeLa cells. Middleton, J.P., Raymond, J.R., Whorton, A.R., Dennis, V.W. J. Clin. Invest. (1990) [Pubmed]
  15. Mechanisms of urinary K+ and H+ excretion: primary structure and functional expression of a novel H,K-ATPase. Jaisser, F., Horisberger, J.D., Geering, K., Rossier, B.C. J. Cell Biol. (1993) [Pubmed]
  16. Oncogenic transformation of chick-embryo fibroblasts by Rous sarcoma virus alters rubidium uptake and ouabain binding. Banerjee, S.P., Bosmann, H.B., Morgan, H.R. Exp. Cell Res. (1977) [Pubmed]
  17. Mouse beta-TC6 insulinoma cells: high expression of functional alpha3beta4 nicotinic receptors mediating membrane potential, intracellular calcium, and insulin release. Ohtani, M., Oka, T., Badyuk, M., Xiao, Y., Kellar, K.J., Daly, J.W. Mol. Pharmacol. (2006) [Pubmed]
  18. The effect of captopril on renal blood flow in renal artery stenosis assessed by positron tomography with rubidium-82. Tamaki, N., Alpert, N.M., Rabito, C.A., Barlai-Kovach, M., Correia, J.A., Strauss, H.W. Hypertension (1988) [Pubmed]
  19. Studies on the mechanism of rubidium-induced kaliuresis. Beck, F.X., Dörge, A., Giebisch, G., Thurau, K. Kidney Int. (1989) [Pubmed]
  20. K+ fluxes mediated by Na(+)-K(+)-Cl- cotransport and Na(+)-K(+)-ATPase pumps in renal tubule cell lines transformed by wild-type and temperature-sensitive strains of Simian virus 40. Vandewalle, A., Vuillemin, T., Teulon, J., Baudouin, B., Wahbe, F., Bens, M., Cassingéna, R., Ronco, P. J. Cell. Physiol. (1993) [Pubmed]
  21. Ouabain-resistant transfectants of the murine ouabain resistance gene contain mutations in the alpha-subunit of the Na,K-ATPase. Cantley, L.G., Zhou, X.M., Cunha, M.J., Epstein, J., Cantley, L.C. J. Biol. Chem. (1992) [Pubmed]
  22. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. Gould, K.L., Goldstein, R.A., Mullani, N.A., Kirkeeide, R.L., Wong, W.H., Tewson, T.J., Berridge, M.S., Bolomey, L.A., Hartz, R.K., Smalling, R.W. J. Am. Coll. Cardiol. (1986) [Pubmed]
  23. Rydberg cold collisions dominated by ultralong range potential. de Oliveira, A.L., Mancini, M.W., Bagnato, V.S., Marcassa, L.G. Phys. Rev. Lett. (2003) [Pubmed]
  24. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. Yoshida, K., Gould, K.L. J. Am. Coll. Cardiol. (1993) [Pubmed]
  25. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats. Vasdev, S., Prabhakaran, V., Sampson, C.A. Hypertension (1990) [Pubmed]
  26. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. vom Dahl, J., Muzik, O., Wolfe, E.R., Allman, C., Hutchins, G., Schwaiger, M. Circulation (1996) [Pubmed]
  27. Effect of elastin peptides on ion fluxes in mononuclear cells, fibroblasts, and smooth muscle cells. Jacob, M.P., Fülöp, T., Foris, G., Robert, L. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  28. Increased hepatocyte permeability surface area product for 86Rb with increase in blood flow. Goresky, C.A., Simard, A., Schwab, A.J. Circ. Res. (1997) [Pubmed]
  29. Evidence that the cation occlusion domain of Na/K-ATPase consists of a complex of membrane-spanning segments. Analysis of limit membrane-embedded tryptic fragments. Shainskaya, A., Karlish, S.J. J. Biol. Chem. (1994) [Pubmed]
  30. Characterization of the (Na+ (+) K+)-ATPase from 3T3-F442A fibroblasts and adipocytes. Isozymes and insulin sensitivity. Brodsky, J.L. J. Biol. Chem. (1990) [Pubmed]
  31. Age dependence of myocardial Na+-K+-ATPase activity and digitalis intoxication in the dog and guinea pig. Marsh, A.J., Lloyd, B.L., Taylor, R.R. Circ. Res. (1981) [Pubmed]
  32. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. Wood, J.N., Winter, J., James, I.F., Rang, H.P., Yeats, J., Bevan, S. J. Neurosci. (1988) [Pubmed]
  33. Trace element concentration in human brain. Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium. Höck, A., Demmel, U., Schicha, H., Kasperek, K., Feinendegen, L.E. Brain (1975) [Pubmed]
  34. Identification and functional analysis of sulfonylurea receptor 1 variants in Japanese patients with NIDDM. Ohta, Y., Tanizawa, Y., Inoue, H., Hosaka, T., Ueda, K., Matsutani, A., Repunte, V.P., Yamada, M., Kurachi, Y., Bryan, J., Aguilar-Bryan, L., Permutt, M.A., Oka, Y. Diabetes (1998) [Pubmed]
  35. Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. Seebohm, G., Sanguinetti, M.C., Pusch, M. J. Physiol. (Lond.) (2003) [Pubmed]
  36. The Ppz protein phosphatases regulate Trk-independent potassium influx in yeast. Ruiz, A., del Carmen Ruiz, M., Sánchez-Garrido, M.A., Ariño, J., Ramos, J. FEBS Lett. (2004) [Pubmed]
  37. Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels. Pusch, M., Bertorello, L., Conti, F. Biophys. J. (2000) [Pubmed]
  38. Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Kinclová, O., Ramos, J., Potier, S., Sychrová, H. Mol. Microbiol. (2001) [Pubmed]
  39. A medium-throughput functional assay of KCNQ2 potassium channels using rubidium efflux and atomic absorption spectrometry. Scott, C.W., Wilkins, D.E., Trivedi, S., Crankshaw, D.J. Anal. Biochem. (2003) [Pubmed]
  40. Silent myocardial ischaemia due to mental stress. Deanfield, J.E., Shea, M., Kensett, M., Horlock, P., Wilson, R.A., de Landsheere, C.M., Selwyn, A.P. Lancet (1984) [Pubmed]
  41. Noninvasive quantification of regional myocardial perfusion with rubidium-82 and positron emission tomography. Exploration of a mathematical model. Herrero, P., Markham, J., Shelton, M.E., Weinheimer, C.J., Bergmann, S.R. Circulation (1990) [Pubmed]
  42. A method to quantitate the fractional extraction of rubidium-82 across the blood-brain barrier using positron emission tomography. Lammertsma, A.A., Brooks, D.J., Frackowiak, R.S., Heather, J.D., Jones, T. J. Cereb. Blood Flow Metab. (1984) [Pubmed]
  43. Effect of carbidopa on the excretion of sodium, dopamine, and ouabain-like substance in the rat. Ho, C.S., Butt, A., Semra, Y.K., Swaminathan, R. Hypertension (1997) [Pubmed]
WikiGenes - Universities