The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of repeated convulsive seizures on brain gamma-aminobutyric acid metabolism in three sublines of mice differing by their response to acoustic stimulations.

The turnover rates and steady-state levels of gamma-aminobutyric acid (GABA) have been determined in 15 brain areas of three sublines of inbred mice differing in their susceptibility to audiogenic seizures: Rb3, which is seizure resistant; Rb2, which develops clonic seizures; and Rb1, which develops tonic-clonic seizures. In the Rb1 subline, GABA steady-state levels are lower than in the Rb3 subline in three of the 15 areas examined (cerebellum, anterior colliculus, and amygdala), whereas in the Rb2 subline, steady-state levels are either higher (posterior colliculus and hippocampus) or lower (amygdala) than in the Rb3 subline. GABA turnover rates differ in three brain areas in Rb1 (amygdala, raphe, and hypothalamus) and in a single area (amygdala) in Rb2 when compared with Rb3. Only one area has similar variations of GABA turnover rate and steady-state levels in the two susceptible sublines: the amygdala. After 2 weeks of repeated auditory stimulations (two times a day, 8,000 Hz, 100 dB), additional alterations in GABA metabolism are observed: mainly large increases in GABA turnover rates (from 40% to three- to fourfold). The Rb2 subline displays a greater number of alterations (increases of turnover rates in pons, cerebellum, anterior and posterior colliculus, amygdala, olfactory bulbs and tubercles, striatum, and frontal cortex) than the Rb1 subline (increases of turnover rates in cerebellum, posterior colliculus, olfactory tubercles, raphe, and frontal cortex and a decrease in hypothalamus). In the Rb3 subline, increases of the turnover rate in amygdala and olfactory tubercles and decreases in olfactory bulbs and hippocampus are observed.(ABSTRACT TRUNCATED AT 250 WORDS)[1]


WikiGenes - Universities