The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Transient state kinetics of the reactions of isobutyraldehyde with compounds I and II of horseradish peroxidase.

Elementary reactions have been studied quantitatively in the complex overall process catalyzed by horseradish peroxidase whereby isobutyraldehyde and molecular oxygen react to form triplet state acetone and formic acid. The rate constant for the reaction of the enol form of isobutyraldehyde with compound I of peroxidase is (8 +/- 1) X 10(6) M-1 s-1 and with compound II (1.3 +/- 0.3) X 10(6) M-1 s-1. Neither the enolate anion nor the keto form is reactive. The reactivity of enols with peroxidase parallels that of unionized phenols and a common mechanism is proposed. The overall catalyzed reaction of isobutyraldehyde and oxygen consists of an initial burst followed by a steady state phase. The burst is caused by the following sequence: 1) an initial high yield of compound I is formed from reaction of native enzyme with the autoxidation product of isobutyraldehyde, a peracid and 2) compound I rapidly depletes the equilibrium pool of enol which is present. After this burst a steady state phase is observed in which the rate-limiting step is the conversion of the keto to the enol form of the aldehyde catalyzed by phosphate buffer. The rate constant for the keto form reacting with phosphate is (8.7 +/- 0.6) X 10(-5) M-1 s-1. All constants were measured in dilute aqueous ethanol at 35 degrees C, pH 7.4, and ionic strength 0.67 M. Both the initial burst of light and the steady state emission from triplet acetone can be observed with the naked eye. Since the magnitude of the burst is a measure of the equilibrium amount of enol, the keto-enol equilibrium constant is readily calculated and hence also the rate constant for conversion of enol to keto. The keto-enol equilibrium constant is unaffected by phosphate which therefore acts as a true catalyst.[1]

References

 
WikiGenes - Universities