The role of ascorbic acid in senile cataract.
The reductone ascorbic acid, present in the crystalline lens in concentrations higher than those of glucose, is capable of undergoing nonenzymatic "browning" in the presence of lenticular proteins. We studied the nonenzymatic browning with ascorbate in model systems employing bovine serum albumin and lens crystallins. When bovine serum albumin, alpha-crystallin, or gamma-crystallin was incubated with [14C]ascorbic acid, the formation of yellow and then brown condensation products appeared to correlate with increasing protein-associated radioactivity. The fluorescence spectrum of these products was similar to that of homogenates of human cataractous lenses. We suggest that the nonenzymatic reaction of lens crystallins with ascorbic acid may contribute, at least in part, to the color changes of aging lenses and to the physical lenticular deterioration leading to senile cataract. High dietary intake of ascorbic acid did not affect the fluorescence spectrum of murine lenses; thus, we assume that the speed and extent of the lenticular browning reactions must depend on a deterioration of other factors of the multicomponent antioxidant system of the eye.[1]References
- The role of ascorbic acid in senile cataract. Bensch, K.G., Fleming, J.E., Lohmann, W. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg